Package 'arenar'

Title: Arena for the Exploration and Comparison of any ML Models
Description: Generates data for challenging machine learning models in 'Arena' <https://arena.drwhy.ai> - an interactive web application. You can start the server with XAI (Explainable Artificial Intelligence) plots to be generated on-demand or precalculate and auto-upload data file beside shareable 'Arena' URL.
Authors: Piotr Piątyszek [aut, cre], Przemyslaw Biecek [aut]
Maintainer: Piotr Piątyszek <[email protected]>
License: GPL-3
Version: 0.2.0
Built: 2025-01-14 06:09:31 UTC
Source: https://github.com/modeloriented/arenar

Help Index


Internal function for calculating data for funnel plot

Description

This is modified version of DALEXtra::funnel_measure

Usage

calculate_subsets_performance(
  explainer,
  score_functions = list(),
  nbins = 5,
  cutoff = 0.01,
  cutoff_name = "Other",
  factor_conversion_threshold = 7
)

Arguments

explainer

Explainer created using DALEX::explain

score_functions

Named list of functions named score_* from auditor package

nbins

Number of qunatiles (partition points) for numeric columns. In case when more than one qunatile have the same value, there will be less partition points.

cutoff

Threshold for categorical data. Entries less frequent than specified value will be merged into one category.

cutoff_name

Name for new category that arised after merging entries less frequent than cutoff

factor_conversion_threshold

Numeric columns with lower number of unique values than value of this parameter will be treated as factors

Value

Data frame with columns

  • Variable Name of splited variable

  • Label Label for variable's values subset

and one column for each score function with returned score


Creates arena object

Description

Creates object with class arena_live or arena_static depending on the first argument. This method is always first in arenar workflow and you should specify all plots' parameters there.

Usage

create_arena(
  live = FALSE,
  N = 500,
  fi_N = NULL,
  fi_B = 10,
  grid_points = 101,
  shap_B = 10,
  funnel_nbins = 5,
  funnel_cutoff = 0.01,
  funnel_factor_threshold = 7,
  fairness_cutoffs = seq(0.05, 0.95, 0.05),
  max_points_number = 150,
  distribution_bins = seq(5, 40, 5),
  enable_attributes = TRUE,
  enable_custom_params = TRUE,
  cl = NULL
)

Arguments

live

Defines if arena should start live server or generate static json

N

number of observations used to calculate dependence profiles

fi_N

number of observations used in feature importance

fi_B

Number of permutation rounds to perform each variable in feature importance

grid_points

number of points for profile

shap_B

Numer of random paths in SHAP

funnel_nbins

Number of partitions for numeric columns for funnel plot

funnel_cutoff

Threshold for categorical data. Entries less frequent than specified value will be merged into one category in funnel plot.

funnel_factor_threshold

Numeric columns with lower number of unique values than value of this parameter will be treated as factors in funnel plot.

fairness_cutoffs

vector of available cutoff levels for fairness panel

max_points_number

maximum size of sample to plot scatter plots in variable against another panel

distribution_bins

vector of available bins count for histogram

enable_attributes

Switch for generating attributes of observations and variables. It is required for custom params. Attributes can increase size of static Arena.

enable_custom_params

Switch to allowing user to modify observations and generate plots for them.

cl

Cluster used to run parallel computations (Do not work in live Arena)

Value

Empty arena_static or arena_live class object.
arena_static:

  • explainer List of used explainers

  • observations_batches List of data frames added as observations

  • params Plots' parameters

  • plots_data List of generated data for plots

arena_live:

  • explainer List of used explainers

  • observations_batches List of data frames added as observations

  • params Plots' parameters

  • timestamp Timestamp of last modification

Examples

library("DALEX")
library("arenar")
library("dplyr", quietly=TRUE, warn.conflicts = FALSE)
# create a model
model <- glm(m2.price ~ ., data=apartments)
# create a DALEX explainer
explainer <- DALEX::explain(model, data=apartments, y=apartments$m2.price)
# prepare observations to be explained
observations <- apartments[1:3, ]
# rownames are used as labels for each observation
rownames(observations) <- paste0(observations$construction.year, "-", observations$surface, "m2")
# generate static arena for one model and 3 observations
arena <- create_arena(live=FALSE) %>% push_model(explainer) %>% push_observations(observations)
print(arena)
if (interactive()) upload_arena(arena)

Internal function for calculating Accumulated Dependence

Description

Internal function for calculating Accumulated Dependence

Usage

get_accumulated_dependence(explainer, variable, params)

Arguments

explainer

Explainer created using DALEX::explain

variable

Name of variable

params

Params from arena object

Value

Plot data in Arena's format


Returns attributes for all params

Description

When param_type is not NULL, then function returns list of objects. Each object represents one of available attribute for specified param type. Field name is attribute name and field values is mapped list of available params to list of value of this attribute for that param. When param_type is NULL, then function returns list with keys for each param type and values are lists described above.

Usage

get_attributes(arena, param_type = NULL)

Arguments

arena

live or static arena object

param_type

Type of param. One of

  • model

  • variable

  • dataset

  • observation

Value

List of attributes or named list of lists of attributes for each param type.


Internal function for calculating Break Down

Description

Internal function for calculating Break Down

Usage

get_break_down(explainer, observation, params)

Arguments

explainer

Explainer created using DALEX::explain

observation

One row data frame observation

params

Params from arena object

Value

Plot data in Arena's format


Internal function for calculating Ceteris Paribus

Description

Internal function for calculating Ceteris Paribus

Usage

get_ceteris_paribus(explainer, observation, variable, params)

Arguments

explainer

Explainer created using DALEX::explain

observation

One row data frame observation

variable

Name of variable

params

Params from arena object

Value

Plot data in Arena's format


Generates list with attributes of a dataset

Description

Generates list with attributes of a dataset

Usage

get_dataset_attributes(arena, dataset)

Arguments

arena

live or static arena object

dataset

List with following elements

  • dataset Data frame

  • target Name of one column from data frame that is used as target variable

  • label Label for dataset to be displayed in Arena

  • variables vector of column names from data frame without target

Value

simple list with attributes of given dataset


Internal function for calculating exploratory data anaylysis plots

Description

Function runs all plot generating methods for given dataset

Usage

get_dataset_plots(dataset, params)

Arguments

dataset

List with following elements

  • dataset Data frame

  • target Name of one column from data frame that is used as target variable

  • label Label for dataset to be displayed in Arena

  • variables vector of column names from data frame without target

params

Params from arena object

Value

list of generated plots' data


Generates list of datasets' labels

Description

Generates list of datasets' labels

Usage

get_datasets_list(arena)

Arguments

arena

live or static arena object

Value

list of datasets' labels


Internal function for calculating fairness

Description

Internal function for calculating fairness

Usage

get_fairness(explainer, variable, params)

Arguments

explainer

Explainer created using DALEX::explain

variable

Name of variable

params

Params from arena object

Value

Plot data in Arena's format


Internal function for calculating feature importance

Description

Internal function for calculating feature importance

Usage

get_feature_importance(explainer, params)

Arguments

explainer

Explainer created using DALEX::explain

params

Params from arena object

Value

Plot data in Arena's format


Internal function for calculating funnel measure

Description

Internal function for calculating funnel measure

Usage

get_funnel_measure(explainer, params)

Arguments

explainer

Explainer created using DALEX::explain

params

Params from arena object

Value

Plot data in Arena's format


Internal function for calculating global plots

Description

Function runs all plot generating methods for given explainer

Usage

get_global_plots(explainer, params)

Arguments

explainer

Explainer created using DALEX::explain

params

Params from arena object

Value

list of generated plots' data


Prepare object ready to change into json

Description

Function converts object with class arena_live or arena_static to object with structure accepted by Arena. See list of schemas.

Usage

get_json_structure(arena)

Arguments

arena

live or static arena object

Value

Object for direct conversion into json


Internal function for calculating local plots for all observations

Description

Function runs all plot generating methods for given observations

Usage

get_local_plots(explainer, observations, params)

Arguments

explainer

Explainer created using DALEX::explain

observations

Data frame of observations

params

Params from arena object

Value

list of generated plots' data


Internal function for returning message as plot data

Description

This method modify exisiting plot's data in Arena's format to show message instead of chart.

Usage

get_message_output(output, type, msg)

Arguments

output

existing plot data to be overwritten

type

type of message "info" or "error"

msg

message to be displayed

Value

Plot data in Arena's format


Internal function for calculating model performance metrics

Description

Internal function for calculating model performance metrics

Usage

get_metrics(explainer, params)

Arguments

explainer

Explainer created using DALEX::explain

params

Params from arena object

Value

Plot data in Arena's format


Generates list with attributes of a model

Description

Generates list with attributes of a model

Usage

get_model_attributes(arena, explainer)

Arguments

arena

live or static arena object

explainer

Explainer created using DALEX::explain

Value

simple list with attributes of given model


Generates list with attributes of an observation

Description

Generates list with attributes of an observation

Usage

get_observation_attributes(arena, observation)

Arguments

arena

live or static arena object

observation

One row data frame observation

Value

simple list with attributes of given observation


Generates list of rownames of each observation from each batch

Description

Generates list of rownames of each observation from each batch

Usage

get_observations_list(arena)

Arguments

arena

live or static arena object

Value

list of observations' names


Internal function for calculating Partial Dependence

Description

Internal function for calculating Partial Dependence

Usage

get_partial_dependence(explainer, variable, params)

Arguments

explainer

Explainer created using DALEX::explain

variable

Name of variable

params

Params from arena object

Value

Plot data in Arena's format


Internal function for calculating regression error characteristic

Description

Internal function for calculating regression error characteristic

Usage

get_rec(explainer, params)

Arguments

explainer

Explainer created using DALEX::explain

params

Params from arena object

Value

Plot data in Arena's format


Internal function for calculating receiver operating curve

Description

Internal function for calculating receiver operating curve

Usage

get_roc(explainer, params)

Arguments

explainer

Explainer created using DALEX::explain

params

Params from arena object

Value

Plot data in Arena's format


Internal function for calculating Shapley Values

Description

Internal function for calculating Shapley Values

Usage

get_shap_values(explainer, observation, params)

Arguments

explainer

Explainer created using DALEX::explain

observation

One row data frame observation to calculate Shapley Values

params

Params from arena object

Value

Plot data in Arena's format


Internal function for calculating subset performance

Description

Internal function for calculating subset performance

Usage

get_subsets_performance(explainer, params)

Arguments

explainer

Explainer created using DALEX::explain

params

Params from arena object

Value

Plot data in Arena's format


Internal function for variable against another plot

Description

Internal function for variable against another plot

Usage

get_variable_against_another(dataset, variable, params)

Arguments

dataset

List with following elements

  • dataset Data frame

  • target Name of one column from data frame that is used as target variable

  • label Label for dataset to be displayed in Arena

  • variables vector of column names from data frame without target

variable

Name of primary variable

params

Params from arena object

Value

Plot data in Arena's format


Generates list with attributes of an variable

Description

Generates list with attributes of an variable

Usage

get_variable_attributes(arena, variable)

Arguments

arena

live or static arena object

variable

Name of variable

Value

simple list with attributes of given variable


Internal function for variable distribution

Description

Internal function for variable distribution

Usage

get_variable_distribution(dataset, variable, params)

Arguments

dataset

List with following elements

  • dataset Data frame

  • target Name of one column from data frame that is used as target variable

  • label Label for dataset to be displayed in Arena

  • variables vector of column names from data frame without target

variable

Name of variable

params

Params from arena object

Value

Plot data in Arena's format


Generates list of unique variables(without target) from each explainer and dataset

Description

Generates list of unique variables(without target) from each explainer and dataset

Usage

get_variables_list(arena)

Arguments

arena

live or static arena object

Value

list of variables' names


Prints live arena summary

Description

Prints live arena summary

Usage

## S3 method for class 'arena_live'
print(x, ...)

Arguments

x

arena_live object

...

other parameters

Value

None

Examples

library("DALEX")
library("arenar")
library("dplyr", quietly=TRUE, warn.conflicts = FALSE)
# create a model
model <- glm(m2.price ~ ., data=apartments)
# create a DALEX explainer
explainer <- DALEX::explain(model, data=apartments, y=apartments$m2.price)
# prepare observations to be explained
observations <- apartments[1:30, ]
# rownames are used as labels for each observation
rownames(observations) <- paste0(observations$construction.year, "-", observations$surface, "m2")
# generate live arena for one model and 30 observations
arena <- create_arena(live=TRUE) %>% push_model(explainer) %>% push_observations(observations)
# print summary
print(arena)

Prints static arena summary

Description

Prints static arena summary

Usage

## S3 method for class 'arena_static'
print(x, ...)

Arguments

x

arena_static object

...

other parameters

Value

None

Examples

library("DALEX")
library("arenar")
library("dplyr", quietly=TRUE, warn.conflicts = FALSE)
# create a model
model <- glm(m2.price ~ ., data=apartments)
# create a DALEX explainer
explainer <- DALEX::explain(model, data=apartments, y=apartments$m2.price)
# prepare observations to be explained
observations <- apartments[1:3, ]
# rownames are used as labels for each observation
rownames(observations) <- paste0(observations$construction.year, "-", observations$surface, "m2")
# generate static arena for one model and 3 observations
arena <- create_arena(live=FALSE) %>% push_model(explainer) %>% push_observations(observations)
# print summary
print(arena)

Adds new datasets to Arena

Description

Adds data frame to create exploratory data analysis plots

Usage

push_dataset(arena, dataset, target, label)

Arguments

arena

live or static arena object

dataset

data frame used for EDA plots

target

name of target variable

label

label of dataset

Value

Updated arena object

Examples

library("DALEX")
library("arenar")
library("dplyr", quietly=TRUE, warn.conflicts = FALSE)
# create live arena with only one dataset
apartments <- DALEX::apartments
arena <- create_arena(live=TRUE) %>% push_dataset(apartments, "m2.price", "apartment")
print(arena)
# add another dataset
HR <- DALEX::HR
arena <- arena %>% push_dataset(HR, "status", "HR")
print(arena)

Adds model to arena

Description

If arena is static it will start calculations for all already pushed observations and global plots. If arena is live, then plots will be calculated on demand, after calling arena_run.

Usage

push_model(arena, explainer)

Arguments

arena

live or static arena object

explainer

Explainer created using DALEX::explain

Value

Updated arena object

Examples

library("DALEX")
library("arenar")
library("dplyr", quietly=TRUE, warn.conflicts = FALSE)
# create first model
model1 <- glm(m2.price ~ ., data=apartments, family=gaussian)
# create a DALEX explainer
explainer1 <- DALEX::explain(model1, data=apartments, y=apartments$m2.price, label="GLM gaussian")
# create live arena with only one model
arena <- create_arena(live=TRUE) %>% push_model(explainer1)
print(arena)
# create and add next model
model2 <- glm(m2.price ~ ., data=apartments, family=Gamma)
explainer2 <- DALEX::explain(model2, data=apartments, y=apartments$m2.price, label="GLM gamma")
arena <- arena %>% push_model(explainer2)
print(arena)

Adds new observations to arena

Description

If arena is static it will start calculations for all already pushed models. If arena is live, then plots will be calculated on demand, after calling arena_run.

Usage

push_observations(arena, observations)

Arguments

arena

live or static arena object

observations

data frame of new observations

Value

Updated arena object


Run server providing data for live Arena

Description

By default function opens browser with new arena session. Appending data to already existing session is also possible using argument append_data

Usage

run_server(
  arena,
  port = 8181,
  host = "127.0.0.1",
  open_browser = TRUE,
  append_data = FALSE,
  arena_url = "https://arena.drwhy.ai/"
)

Arguments

arena

Live arena object

port

server port

host

server ip address (hostnames do not work yet)

open_browser

Whether to open browser with new session

append_data

Whether to append data to already existing session

arena_url

URL of Arena dashboard instance

Value

not modified arena object

Examples

library("DALEX")
library("arenar")
library("dplyr", quietly=TRUE, warn.conflicts = FALSE)
# create a model
model <- glm(m2.price ~ ., data=apartments)
# create a DALEX explainer
explainer <- DALEX::explain(model, data=apartments, y=apartments$m2.price)
# generate live arena for one model and all data as observations
arena <- create_arena(live=TRUE) %>% push_model(explainer) %>% push_observations(apartments)
# run the server
if (interactive()) run_server(arena, port=1234)

Save generated json file from static arena

Description

Save generated json file from static arena

Usage

save_arena(arena, filename = "data.json", pretty = FALSE)

Arguments

arena

Static arena object

filename

Name of output file

pretty

whether to generate pretty and easier to debug JSON

Value

not modified arena object


Splits multiclass explainer into multiple classification explainers

Description

Splits multiclass explainer into multiple classification explainers

Usage

split_multiclass_explainer(explainer)

Arguments

explainer

Multiclass explainer created using DALEX::explain

Value

list of explainers


Internal function for pretty truncationg params list

Description

Internal function for pretty truncationg params list

Usage

truncate_vector(vec, size = 6)

Arguments

vec

vector to be truncated

size

elements with index greater than size will be truncated

Value

string with collapsed and truncated input vector


Upload generated json file from static arena

Description

By default function opens browser with new arena session. Appending data to already existing session is also possible using argument append_data

Usage

upload_arena(
  arena,
  open_browser = TRUE,
  append_data = FALSE,
  arena_url = "https://arena.drwhy.ai/",
  pretty = FALSE
)

Arguments

arena

Static arena object

open_browser

Whether to open browser with new session

append_data

Whether to append data to already existing session

arena_url

URL of Arena dashboard instance

pretty

whether to generate pretty and easier to debug JSON

Value

not modified arena object


Checks if it is safe do add new dataset to the arena object

Description

Checks if it is safe do add new dataset to the arena object

Usage

validate_new_dataset(arena, dataset, target, label)

Arguments

arena

live or static arena object

dataset

data frame for data analysis

target

name of target variable

label

name of dataset

Value

None


Checks if it is safe do add a new model to the arena object

Description

Function checks if explainer's label is not already used call stop if there is at least one conflict.

Usage

validate_new_model(arena, explainer)

Arguments

arena

live or static arena object

explainer

Explainer created using DALEX::explain

Value

None


Checks if it is safe do add new observations to the arena object

Description

Function checks if rownames are not already used and call stop if there is at least one conflict.

Usage

validate_new_observations(arena, observations)

Arguments

arena

live or static arena object

observations

data frame of new observations

Value

None