Title: | Flexible Tool for Bias Detection, Visualization, and Mitigation |
---|---|
Description: | Measure fairness metrics in one place for many models. Check how big is model's bias towards different races, sex, nationalities etc. Use measures such as Statistical Parity, Equal odds to detect the discrimination against unprivileged groups. Visualize the bias using heatmap, radar plot, biplot, bar chart (and more!). There are various pre-processing and post-processing bias mitigation algorithms implemented. Package also supports calculating fairness metrics for regression models. Find more details in (Wiśniewski, Biecek (2021)) <arXiv:2104.00507>. |
Authors: | Jakub Wiśniewski [aut, cre], Przemysław Biecek [aut] |
Maintainer: | Jakub Wiśniewski <[email protected]> |
License: | GPL-3 |
Version: | 1.2.1 |
Built: | 2025-01-09 05:41:44 UTC |
Source: | https://github.com/modeloriented/fairmodels |
adult
dataset consists of many columns containing various information about relationship, hours worked per week, workclass etc... and about
salary, whether more than 50K a year or not. Lot's of possible protected attributes such as sex, race age. Some columns contain
level "unknown" and these values are not removed and removing them depends on user as they might contain some information.
data(adult)
data(adult)
A data frame with 32561 rows and 15 variables:
factor, <=50K/>50K whether a person salary exceeds 50K a year or not
integer, age of person
factor, field of work
numeric
factor, completed education degree
numeric, education number in converted from education factor, the bigger the better
factor
factor, where this person works
factor, relationship information
factor, ethnicity of a person
factor, gender of a person
numeric
numeric
numeric, how many hours per week does this person work
factor, in which country was this person born
Data from UCL https://archive.ics.uci.edu/ml/datasets/adult
adult_test
dataset consists of many columns containing various information about relationship, hours worked per week, workclass etc... and about
salary, whether more than 50K a year or not. Lot's of possible protected attributes such as sex, race age. Some columns contain
level "unknown" and these values are not removed and removing them depends on user as they might contain some information.
Data is designed for testing and ready to go.
data(adult_test)
data(adult_test)
A data frame with 16281 rows and 15 variables:
factor, <=50K/>50K whether a person salary exceeds 50K a year or not
integer, age of person
factor, field of work
numeric
factor, completed education degree
numeric, education number in converted from education factor, the bigger the better
factor
factor, where this person works
factor, relationship information
factor, ethnicity of a person
factor, gender of a person
numeric
numeric
numeric, how many hours per week does this person work
factor, in which country was this person born
Data from UCL https://archive.ics.uci.edu/ml/datasets/adult
Create all_cutoffs
object and see how with the change of cutoffs parity loss of fairness metrics changes. Value of cutoff changes equally for all subgroups.
User can pick which fairness metrics to create the object with via fairness_metrics vector.
all_cutoffs( x, grid_points = 101, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP") )
all_cutoffs( x, grid_points = 101, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP") )
x |
object of class |
grid_points |
numeric, grid for cutoffs to test. Number of points between 0 and 1 spread evenly |
fairness_metrics |
character, name of parity_loss metric or vector of multiple metrics names. Full names can be found in |
all_cutoffs
object, data.frame
containing information about label, metric and parity_loss at particular cutoff
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) ac <- all_cutoffs(fobject) plot(ac) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 100, seed = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_rf, fobject) ac <- all_cutoffs(fobject) plot(ac)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) ac <- all_cutoffs(fobject) plot(ac) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 100, seed = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_rf, fobject) ac <- all_cutoffs(fobject) plot(ac)
Create data.frame
from group_matrices
object containing metric scores for each subgroup.
calculate_group_fairness_metrics(x)
calculate_group_fairness_metrics(x)
x |
object of class |
group_metric_matrix
object
It's a data.frame
with metrics as row names and scores for those metrics for each subgroup in columns
Ceteris paribus cutoff is way to check how will parity loss behave if only cutoff for one subgroup was changed.
By using parameter new_cutoffs
parity loss for metrics with new cutoffs will be calculated. Note that cutoff for subgroup (passed as parameter) will
change no matter new_cutoff
's value at that position. When parameter cumulated
is set to true, all metrics will be summed and facets will
collapse to one plot with different models on it. Sometimes due to the fact that some metric might contain NA for all cutoff values, cumulated plot might be present without
this model.
ceteris_paribus_cutoff( x, subgroup, new_cutoffs = NULL, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"), grid_points = 101, cumulated = FALSE )
ceteris_paribus_cutoff( x, subgroup, new_cutoffs = NULL, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"), grid_points = 101, cumulated = FALSE )
x |
object of class |
subgroup |
character, name of subgroup (level in protected variable) |
new_cutoffs |
list of cutoffs with names matching those of subgroups. Each value should represent cutoff for particular subgroup. Position corresponding to subgroups in levels will be changed. Default is NULL |
fairness_metrics |
character, name of parity_loss metric or vector of multiple metrics, for full metric names check |
grid_points |
numeric, grid for cutoffs to test. Number of points between 0 and 1 spread evenly. |
cumulated |
logical, if |
ceteris_paribus_cutoff
data.frame
containing information about label, metric and parity_loss at particular cutoff
data("compas") # positive outcome - not being recidivist two_yr_recidivism <- factor(compas$Two_yr_Recidivism, levels = c(1, 0)) y_numeric <- as.numeric(two_yr_recidivism) - 1 compas$Two_yr_Recidivism <- two_yr_recidivism lm_model <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = compas[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = compas$Ethnicity, privileged = "Caucasian" ) cpc <- ceteris_paribus_cutoff(fobject, "African_American") plot(cpc) rf_model <- ranger::ranger(Two_yr_Recidivism ~ ., data = compas, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = compas[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = compas$Ethnicity, privileged = "Caucasian" ) cpc <- ceteris_paribus_cutoff(fobject, "African_American") plot(cpc)
data("compas") # positive outcome - not being recidivist two_yr_recidivism <- factor(compas$Two_yr_Recidivism, levels = c(1, 0)) y_numeric <- as.numeric(two_yr_recidivism) - 1 compas$Two_yr_Recidivism <- two_yr_recidivism lm_model <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = compas[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = compas$Ethnicity, privileged = "Caucasian" ) cpc <- ceteris_paribus_cutoff(fobject, "African_American") plot(cpc) rf_model <- ranger::ranger(Two_yr_Recidivism ~ ., data = compas, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = compas[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = compas$Ethnicity, privileged = "Caucasian" ) cpc <- ceteris_paribus_cutoff(fobject, "African_American") plot(cpc)
Extracts metrics from metric_data
from fairness object.
It allows to visualize and compare parity loss of chosen metric values across all models.
choose_metric(x, fairness_metric = "FPR")
choose_metric(x, fairness_metric = "FPR")
x |
object of class |
fairness_metric |
|
chosen_metric
object
It is a list with following fields:
parity_loss_metric_data data.frame
with columns: parity_loss_metric and label
metric chosen metric
label character, vector of model labels
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) cm <- choose_metric(fobject, "TPR") plot(cm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) cm <- choose_metric(fobject, "TPR") plot(cm)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) cm <- choose_metric(fobject, "TPR") plot(cm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) cm <- choose_metric(fobject, "TPR") plot(cm)
compas
dataset. From ProPublica: across the nation, judges, probation and parole officers are increasingly using algorithms to assess a criminal defendant’s likelihood to re-offend.
data(compas)
data(compas)
A data frame with 6172 rows and 7 variables:
factor, 1/0 for future recidivism or no recidivism. Models should predict this values
numeric, number of priors
factor, 1/0 for age above 45 years or not
factor, 1/0 for age below 25 years or not
factor, 1/0 for having recorded misdemeanor(s) or not
factor, Caucasian, African American, Asian, Hispanic, Native American or Other
factor, female/male for gender
The original source of data is https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis. Modified data used here comes from https://www.kaggle.com/danofer/compass/ (probublicaCompassRecidivism_data_fairml.csv)
Calculates confusion matrix for given cutoff
confusion_matrix(probs, observed, cutoff)
confusion_matrix(probs, observed, cutoff)
probs |
numeric, vector with probabilities given by model |
observed |
numeric, vector with actual values from outcome, either 0 or 1 |
cutoff |
numeric, single value denoting cutoff/threshold |
object of class confussion_matrix
It is a list with following fields:
tpnumber of True Positives
fpnumber of False Positives
tnnumber of True Negatives
fnnumber of False Negatives
probs <- rnorm(20, 0.4, 0.1) observed <- round(runif(20)) confusion_matrix(probs, observed, 0.5)
probs <- rnorm(20, 0.4, 0.1) observed <- round(runif(20)) confusion_matrix(probs, observed, 0.5)
Disparate impact remover is a pre-processing bias mitigation method. It removes bias hidden in numeric columns in data. It changes distribution of ordinal features of data with regard to earth mover distance. It works best if among subgroups there is similar number of observations.
disparate_impact_remover(data, protected, features_to_transform, lambda = 1)
disparate_impact_remover(data, protected, features_to_transform, lambda = 1)
data |
|
protected |
factor, vector containing sensitive information such as gender, race etc... If vector is character it will transform it to factor. |
features_to_transform |
character, vector of column names to be transformed. Columns must have numerical, ordinal values |
lambda |
numeric, amount of repair desired. Value from 0 to 1, where 0 will return almost unchanged dataset and 1 fully repaired dataset |
This is implementation of geometric method which preserves ranks unlike combinatorial repair. lambda
close to 1 denotes that distributions will be very close to each other
and lambda
close to 0 means that densities will barely change. Note that although lambda
equal 0 should mean that original data will be returned, it usually changes distributions slightly due to
pigeonholing. The number of pigeonholes is fixed and equal to min101, unique(a), where a is vector with values for subgroup. So if some subgroup is not numerous and
the distribution is discrete with small number of variables then there will be small number of pigeonholes. It will affect data significantly.
repaired data (data.frame
object)
This method was implemented based on Feldman, Friedler, Moeller, Scheidegger, Venkatasubramanian 2015 https://arxiv.org/pdf/1412.3756.pdf
library("ggplot2") set.seed(1) # custom data frame with kind and score custom_data <- data.frame( kind = as.factor(c(rep("second", 500), rep("first", 500))), score = c(rnorm(500, 400, 40), rnorm(500, 600, 100)) ) ggplot(custom_data, aes(score, fill = kind)) + geom_density(alpha = 0.5) fixed_data <- disparate_impact_remover( data = custom_data, protected = custom_data$kind, features_to_transform = "score", lambda = 0.8 ) ggplot(fixed_data, aes(score, fill = kind)) + geom_density(alpha = 0.5) # lambda 1 gives identical distribution, lambda 0 (almost) original distributions fixed_data_unchanged <- disparate_impact_remover( data = custom_data, protected = custom_data$kind, features_to_transform = "score", lambda = 0 ) ggplot(fixed_data_unchanged, aes(score, fill = kind)) + geom_density(alpha = 0.5) fixed_data_fully_changed <- disparate_impact_remover( data = custom_data, protected = custom_data$kind, features_to_transform = "score", lambda = 1 ) ggplot(fixed_data_fully_changed, aes(score, fill = kind)) + geom_density(alpha = 0.5) + facet_wrap(kind ~ ., nrow = 2)
library("ggplot2") set.seed(1) # custom data frame with kind and score custom_data <- data.frame( kind = as.factor(c(rep("second", 500), rep("first", 500))), score = c(rnorm(500, 400, 40), rnorm(500, 600, 100)) ) ggplot(custom_data, aes(score, fill = kind)) + geom_density(alpha = 0.5) fixed_data <- disparate_impact_remover( data = custom_data, protected = custom_data$kind, features_to_transform = "score", lambda = 0.8 ) ggplot(fixed_data, aes(score, fill = kind)) + geom_density(alpha = 0.5) # lambda 1 gives identical distribution, lambda 0 (almost) original distributions fixed_data_unchanged <- disparate_impact_remover( data = custom_data, protected = custom_data$kind, features_to_transform = "score", lambda = 0 ) ggplot(fixed_data_unchanged, aes(score, fill = kind)) + geom_density(alpha = 0.5) fixed_data_fully_changed <- disparate_impact_remover( data = custom_data, protected = custom_data$kind, features_to_transform = "score", lambda = 1 ) ggplot(fixed_data_fully_changed, aes(score, fill = kind)) + geom_density(alpha = 0.5) + facet_wrap(kind ~ ., nrow = 2)
Unfold fairness object to 3 columns (metrics, label, score) to construct better base for visualization.
expand_fairness_object( x, scale = FALSE, drop_metrics_with_na = FALSE, fairness_metrics = NULL )
expand_fairness_object( x, scale = FALSE, drop_metrics_with_na = FALSE, fairness_metrics = NULL )
x |
object of class |
scale |
logical, if |
drop_metrics_with_na |
logical, if |
fairness_metrics |
character, vector of fairness metrics names indicating from which expand. |
object of class expand_fairness_object
. It is a data.frame
with scores for each metric and model.
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) expand_fairness_object(fobject, drop_metrics_with_na = TRUE) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) expand_fairness_object(fobject, drop_metrics_with_na = TRUE)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) expand_fairness_object(fobject, drop_metrics_with_na = TRUE) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) expand_fairness_object(fobject, drop_metrics_with_na = TRUE)
Fairness check creates fairness_object
which measures different fairness metrics and wraps data, explainers and parameters in useful object. This is fundamental object in this package.
It enables to visualize fairness metrics and models in many ways and compare models on both fairness and performance level. Fairness check acts as merger and wrapper for explainers and fairness objects.
While other fairness objects values are not changed, fairness check assigns cutoffs and labels to provided explainers so same explainers with changed labels/cutoffs might be gradually added to fairness object.
Users through print and plot methods may quickly check values of most popular fairness metrics. More on that topic in details.
fairness_check( x, ..., protected = NULL, privileged = NULL, cutoff = NULL, label = NULL, epsilon = 0.8, verbose = TRUE, colorize = TRUE )
fairness_check( x, ..., protected = NULL, privileged = NULL, cutoff = NULL, label = NULL, epsilon = 0.8, verbose = TRUE, colorize = TRUE )
x |
object created with |
... |
possibly more objects created with |
protected |
factor, protected variable (also called sensitive attribute), containing privileged and unprivileged groups |
privileged |
factor/character, one value of |
cutoff |
numeric, vector of cutoffs (thresholds) for each value of protected variable, affecting only explainers. |
label |
character, vector of labels to be assigned for explainers, default is explainer label. |
epsilon |
numeric, boundary for fairness checking, lowest acceptable ratio of metrics between unprivileged and privileged subgroups. Default value is 0.8. More on the idea behind epsilon in details section. |
verbose |
logical, whether to print information about creation of fairness object |
colorize |
logical, whether to print information in color |
Fairness check
Metrics used are made for each subgroup, then base metric score is subtracted leaving loss of particular metric.
If absolute loss of metrics ratio is not within acceptable boundaries than such metric is marked as "not passed". It means that values of metrics should be within (epsilon, 1/epsilon) boundary.
The default ratio is set to 0.8 which adhere to US 80
score achieved in metrics by privileged subgroup. For example if TPR_unprivileged/TPR_privileged is less than 0.8 then such ratio is sign of discrimination. On the other hand if
TPR_privileged/TPR_unprivileged is more than 1.25 (1/0.8) than there is discrimination towards privileged group.
Epsilon value can be adjusted to user's needs. It should be interpreted as the lowest ratio of metrics allowed. There are some metrics that might be derived from existing metrics (For example Equalized Odds - equal TPR and FPR for all subgroups).
That means passing 5 metrics in fairness check asserts that model is even more fair. In fairness_check
models must always predict positive result. Not adhering to this rule
may lead to misinterpretation of the plot. More on metrics and their equivalents:
https://fairware.cs.umass.edu/papers/Verma.pdf
https://en.wikipedia.org/wiki/Fairness_(machine_learning)
Parity loss - visualization tool
Parity loss is computed as follows: M_parity_loss = sum(abs(log(metric/metric_privileged)))
where:
M - some metric mentioned above
metric - vector of metric scores from each subgroup metric_privileged - value of metric vector for privileged subgroup
base_metric - scalar, value of metric for base subgroup
An object of class fairness_object
which is a list with elements:
parity_loss_metric_data - data.frame containing parity loss for various fairness metrics. Created with following metrics:
TPR - True Positive Rate (Sensitivity, Recall)
TNR - True Negative Rate (Specificity)
PPV - Positive Predictive Value (Precision)
NPV - Negative Predictive Value
FNR - False Negative Rate
FPR - False Positive Rate
FDR - False Discovery Rate
FOR - False Omission Rate
TS - Threat Score
STP - Statistical Parity
ACC - Accuracy
F1 - F1 Score
groups_data - metrics across levels in protected variable
groups_confusion_matrices - confusion matrices for each subgroup
explainers - list of DALEX
explainers used to create object
cutoffs - list of cutoffs for each explainer and subgroup
fairness_check_data - data.frame
used for for plotting fairness_object
... - other parameters passed to function
Zafar,Valera, Rodriguez, Gummadi (2017) https://arxiv.org/pdf/1610.08452.pdf
Hardt, Price, Srebro (2016) https://arxiv.org/pdf/1610.02413.pdf
Verma, Rubin (2018) https://fairware.cs.umass.edu/papers/Verma.pdf
Barocas, Hardt, Narayanan (2019) https://fairmlbook.org/
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) plot(fobject) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, max.depth = 3, num.trees = 100, seed = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_rf, fobject) plot(fobject) # custom print plot(fobject, fairness_metrics = c("ACC", "TPR"))
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) plot(fobject) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, max.depth = 3, num.trees = 100, seed = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_rf, fobject) plot(fobject) # custom print plot(fobject, fairness_metrics = c("ACC", "TPR"))
This is an experimental approach. Please have it in mind when using it. Fairness_check_regression enables to check fairness in regression models. It uses so-called probabilistic classification to approximate fairness measures. The metrics in use are independence, separation, and sufficiency. The intuition behind this method is that the closer to 1 the metrics are the better. When all metrics are close to 1 then it means that from the perspective of a predictive model there are no meaningful differences between subgroups.
fairness_check_regression( x, ..., protected = NULL, privileged = NULL, label = NULL, epsilon = NULL, verbose = TRUE, colorize = TRUE )
fairness_check_regression( x, ..., protected = NULL, privileged = NULL, label = NULL, epsilon = NULL, verbose = TRUE, colorize = TRUE )
x |
object created with |
... |
possibly more objects created with |
protected |
factor, protected variable (also called sensitive attribute), containing privileged and unprivileged groups |
privileged |
factor/character, one value of |
label |
character, vector of labels to be assigned for explainers, default is explainer label. |
epsilon |
numeric, boundary for fairness checking, lowest/maximal acceptable metric values for unprivileged. Default value is 0.8. |
verbose |
logical, whether to print information about creation of fairness object |
colorize |
logical, whether to print information in color |
Sometimes during metric calculation faze approximation algorithms (logistic regression models) might not coverage properly. This might indicate that the membership to subgroups has strong predictive power.
Steinberg, Daniel & Reid, Alistair & O'Callaghan, Simon. (2020). Fairness Measures for Regression via Probabilistic Classification. - https://arxiv.org/pdf/2001.06089.pdf
set.seed(123) data <- data.frame( x = c(rnorm(500, 500, 100), rnorm(500, 400, 200)), pop = c(rep("A", 500), rep("B", 500)) ) data$y <- rnorm(length(data$x), 1.5 * data$x, 100) # create model model <- lm(y ~ ., data = data) # create explainer exp <- DALEX::explain(model, data = data, y = data$y) # create fobject fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A") # results fobject plot(fobject) model_ranger <- ranger::ranger(y ~ ., data = data, seed = 123) exp2 <- DALEX::explain(model_ranger, data = data, y = data$y) fobject <- fairness_check_regression(exp2, fobject) # results fobject plot(fobject)
set.seed(123) data <- data.frame( x = c(rnorm(500, 500, 100), rnorm(500, 400, 200)), pop = c(rep("A", 500), rep("B", 500)) ) data$y <- rnorm(length(data$x), 1.5 * data$x, 100) # create model model <- lm(y ~ ., data = data) # create explainer exp <- DALEX::explain(model, data = data, y = data$y) # create fobject fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A") # results fobject plot(fobject) model_ranger <- ranger::ranger(y ~ ., data = data, seed = 123) exp2 <- DALEX::explain(model_ranger, data = data, y = data$y) fobject <- fairness_check_regression(exp2, fobject) # results fobject plot(fobject)
Create fairness_heatmap
object to compare both models and metrics.
If parameter scale
is set to TRUE
metrics will be scaled to median = 0 and sd = 1.
If NA's appear heatmap will still plot, but with gray area where NA's were.
fairness_heatmap(x, scale = FALSE)
fairness_heatmap(x, scale = FALSE)
x |
object of class |
scale |
logical, if codeTRUE metrics will be scaled to mean 0 and sd 1. Default |
fairness_heatmap
object.
It is a list with following fields:
heatmap_data - data.frame
with information about score for model and parity loss metric
matrix_model - matrix used in dendogram plots
scale - logical parameter passed to fairness_heatmap
label - character, vector of model labels
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fh <- fairness_heatmap(fobject) plot(fh)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fh <- fairness_heatmap(fobject) plot(fh)
Calculate PC for metric_matrix to see similarities between models and metrics. If omit_models_with_NA
is set to TRUE
models with NA will be omitted as opposed
to default behavior, when metrics are omitted.
fairness_pca(x, omit_models_with_NA = FALSE)
fairness_pca(x, omit_models_with_NA = FALSE)
x |
object of class |
omit_models_with_NA |
logical, if |
fairness_pca
object
It is list containing following fields:
pc_1_2 - amount of data variance explained with each component
rotation - rotation from stats::prcomp
x - x from stats::prcomp
sdev - sdev from stats::prcomp
label - model labels
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fpca <- fairness_pca(fobject) plot(fpca)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fpca <- fairness_pca(fobject) plot(fpca)
Make fairness_radar
object with chosen fairness_metrics
. Note that there must be at least three metrics that does not contain NA.
fairness_radar(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
fairness_radar(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
x |
object of class |
fairness_metrics |
character, vector of metric names, at least 3 metrics without NA needed. Full names of metrics can be found in |
fairness_radar
object.
It is a list containing:
radar_data - data.frame
containing scores for each model and parity loss metric
label - model labels
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) fradar <- fairness_radar(fobject, fairness_metrics = c( "ACC", "STP", "TNR", "TPR", "PPV" )) plot(fradar) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) fradar <- fairness_radar(fobject, fairness_metrics = c( "ACC", "STP", "TNR", "TPR", "PPV" )) plot(fradar)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) fradar <- fairness_radar(fobject, fairness_metrics = c( "ACC", "STP", "TNR", "TPR", "PPV" )) plot(fradar) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) fradar <- fairness_radar(fobject, fairness_metrics = c( "ACC", "STP", "TNR", "TPR", "PPV" )) plot(fradar)
german
dataset. Data contains information about people and their credit risks.
data(german)
data(german)
A data frame with 1000 rows and 10 variables:
factor, good/bad risk connected with giving the credit. Models should predict this values
factor, male/female , considered to be protected group
numeric, job titles converted to integers where 0- unemployed/unskilled, 3- management/ self-employed/highly qualified employee/ officer
factor, rent/own/free where this person lives
factor, little/moderate/quite rich/rich/not_known, where not_known indicates NA
factor, little/moderate/rich/not_known, where not_known indicates NA
numeric, amount of money in credit
numeric, duration of credit
factor, purpose of credit
numeric, age of person that applied for credit
Data from kaggle https://www.kaggle.com/kabure/german-credit-data-with-risk/. The original source is UCL https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).
Calculates confusion matrices for each subgroup
group_matrices(protected, probs, preds, cutoff)
group_matrices(protected, probs, preds, cutoff)
protected |
vector containing protected variable |
probs |
|
preds |
numeric, vector with predictions |
cutoff |
|
group_matrices
object
It is a list with values:
For each subgroup:
subgroup
tp - number of true positives
fp - number of false positives
tn - number of true negatives
fn - number of false negatives
data("compas") glm_compas <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit")) y_prob <- glm_compas$fitted.values y_numeric <- as.numeric(compas$Two_yr_Recidivism) - 1 gm <- group_matrices(compas$Ethnicity, y_prob, y_numeric, cutoff = list( Asian = 0.45, African_American = 0.5, Other = 0.5, Hispanic = 0.5, Caucasian = 0.4, Native_American = 0.5 ) ) gm
data("compas") glm_compas <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit")) y_prob <- glm_compas$fitted.values y_numeric <- as.numeric(compas$Two_yr_Recidivism) - 1 gm <- group_matrices(compas$Ethnicity, y_prob, y_numeric, cutoff = list( Asian = 0.45, African_American = 0.5, Other = 0.5, Hispanic = 0.5, Caucasian = 0.4, Native_American = 0.5 ) ) gm
Group metric enables to extract data from metrics generated for each subgroup (values in protected variable)
The closer metric values are to each other, the less bias particular model has. If parity_loss
parameter is set to TRUE
, distance between
privileged and unprivileged subgroups will be measured. When plotted shows both fairness metric and chosen performance metric.
group_metric( x, fairness_metric = NULL, performance_metric = NULL, parity_loss = FALSE, verbose = TRUE )
group_metric( x, fairness_metric = NULL, performance_metric = NULL, parity_loss = FALSE, verbose = TRUE )
x |
object of class |
fairness_metric |
character, fairness metric name, if |
performance_metric |
character, performance metric name |
parity_loss |
logical, if |
verbose |
logical, whether to print information about metrics on console or not. Default |
Available metrics:
Fairness metrics (Full names explained in fairness_check
documentation):
TPR
TNR
PPV
NPV
FNR
FPR
FDR
FOR
TS
ACC
STP
F1
Performance metrics
recall
precision
accuracy
f1
auc
group_metric
object.
It is a list with following items:
group_metric_data - data.frame
containing fairness metric scores for each model
performance_data - data.frame
containing performance metric scores for each model
fairness_metric - name of fairness metric
performance_metric - name of performance metric
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) plot(gm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) plot(gm)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) plot(gm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) plot(gm)
Special method for model performance evaluation. Counts number of tp, tn, fp, fn for each subgroup (and therefore potentially distinct cutoff), sums afterwards.
group_model_performance(x, protected, cutoff, performance_metric)
group_model_performance(x, protected, cutoff, performance_metric)
x |
object created with |
protected |
factor, vector with levels as subgroups |
cutoff |
vector of thresholds for each subgroup |
performance_metric |
name of performance metric |
score in performance metric between 0 and 1
Creates metric_scores
object to facilitate visualization. Check how the metric scores differ among models, what is this score, and how it changes
for example after applying bias mitigation technique. The vertical black lines
denote the scores for privileged subgroup. It is best to use only few metrics (using fairness_metrics
parameter)
metric_scores(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
metric_scores(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
x |
object of class |
fairness_metrics |
character, vector with fairness metric names. Default metrics are ones in |
metric_scores
object.
It is a list containing:
metric_scores_data - data.frame
with information about score in particular subgroup, metric, and model
privileged - name of privileged subgroup
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP")) plot(ms) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP")) plot(ms)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP")) plot(ms) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP")) plot(ms)
Measure performance in both fairness metric and
performance_and_fairness(x, fairness_metric = NULL, performance_metric = NULL)
performance_and_fairness(x, fairness_metric = NULL, performance_metric = NULL)
x |
object of class |
fairness_metric |
fairness metric, one of metrics in fairness_objects parity_loss_metric_data (ACC, TPR, PPV, ...) Full list in |
performance_metric |
performance metric, one of |
Creates perfomance_and_fairness
object. Measure model performance and model fairness metric at the same time. Choose best model according to both metrics. When plotted y axis is inversed to accentuate
that models in top right corner are the best according to both metrics.
performance_and_fairness
object.
It is list containing:
paf_data - performance and fairness data.frame
containing fairness and performance metric scores for each model
fairness_metric - chosen fairness metric name
performance_metric - chosen performance_metric name
label - model labels
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) paf <- performance_and_fairness(fobject) plot(paf) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) paf <- performance_and_fairness(fobject) plot(paf)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) paf <- performance_and_fairness(fobject) plot(paf) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) paf <- performance_and_fairness(fobject) plot(paf)
Plot distribution for models output probabilities. See how being in particular subgroup affects models decision.
plot_density(x, ...)
plot_density(x, ...)
x |
object of class |
... |
other plot parameters |
ggplot2
object
data("compas") glm_compas <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit")) y_numeric <- as.numeric(compas$Two_yr_Recidivism) - 1 explainer_glm <- DALEX::explain(glm_compas, data = compas, y = y_numeric) fobject <- fairness_check(explainer_glm, protected = compas$Ethnicity, privileged = "Caucasian" ) plot_density(fobject)
data("compas") glm_compas <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit")) y_numeric <- as.numeric(compas$Two_yr_Recidivism) - 1 explainer_glm <- DALEX::explain(glm_compas, data = compas, y = y_numeric) fobject <- fairness_check(explainer_glm, protected = compas$Ethnicity, privileged = "Caucasian" ) plot_density(fobject)
Easier access to all plots in fairmodels. Provide plot type (that matches to function name), pass additional parameters and plot.
plot_fairmodels(x, type, ...) ## S3 method for class 'explainer' plot_fairmodels(x, type = "fairness_check", ..., protected, privileged) ## S3 method for class 'fairness_object' plot_fairmodels(x, type = "fairness_check", ...) ## Default S3 method: plot_fairmodels(x, type = "fairness_check", ...)
plot_fairmodels(x, type, ...) ## S3 method for class 'explainer' plot_fairmodels(x, type = "fairness_check", ..., protected, privileged) ## S3 method for class 'fairness_object' plot_fairmodels(x, type = "fairness_check", ...) ## Default S3 method: plot_fairmodels(x, type = "fairness_check", ...)
x |
object created with |
type |
character, type of plot. Should match function name in fairmodels. Default is fairness_check. |
... |
other parameters passed to fairmodels functions. |
protected |
factor, vector containing sensitive attributes such as gender, race, etc... |
privileged |
character/factor, level in factor denoting privileged subgroup |
types (function names) available:
fairness_check
stack_metrics
fairness_heatmap
fairness_pca
fairness_radar
group_metric
choose_metric
metric_scores
performance_and_fairness
all_cutoffs
ceteris_paribus_cutoff
ggplot2
object
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) # works with explainer when protected and privileged are passed plot_fairmodels(explainer_lm, type = "fairness_radar", protected = german$Sex, privileged = "male" ) # or with fairness_object fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) plot_fairmodels(fobject, type = "fairness_radar")
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) # works with explainer when protected and privileged are passed plot_fairmodels(explainer_lm, type = "fairness_radar", protected = german$Sex, privileged = "male" ) # or with fairness_object fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) plot_fairmodels(fobject, type = "fairness_radar")
All cutoffs plot allows to check how parity loss of chosen metrics is affected by the change of cutoff. Values of cutoff
are the same for all subgroups (levels of protected variable) no matter what cutoff values were in fairness_object
.
## S3 method for class 'all_cutoffs' plot(x, ..., label = NULL)
## S3 method for class 'all_cutoffs' plot(x, ..., label = NULL)
x |
|
... |
other plot parameters |
label |
character, label of model to plot. Default NULL. If default prints all models. |
ggplot2
object
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) ac <- all_cutoffs(fobject) plot(ac) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 100, seed = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_rf, fobject) ac <- all_cutoffs(fobject) plot(ac)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) ac <- all_cutoffs(fobject) plot(ac) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 100, seed = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_rf, fobject) ac <- all_cutoffs(fobject) plot(ac)
Ceteris paribus cutoff is way to check how will parity loss behave if we changed only cutoff in one subgroup. It plots object of class ceteris_paribus_cutoff. It might have two types - default and cumulated. Cumulated sums metrics and plots it all in one plot. When default one is used all chosen metrics will be plotted for each model.
## S3 method for class 'ceteris_paribus_cutoff' plot(x, ...)
## S3 method for class 'ceteris_paribus_cutoff' plot(x, ...)
x |
ceteris_paribus_cutoff object |
... |
other plot parameters |
ggplot2
object
data("compas") # positive outcome - not being recidivist two_yr_recidivism <- factor(compas$Two_yr_Recidivism, levels = c(1, 0)) y_numeric <- as.numeric(two_yr_recidivism) - 1 compas$Two_yr_Recidivism <- two_yr_recidivism lm_model <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = compas[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = compas$Ethnicity, privileged = "Caucasian" ) cpc <- ceteris_paribus_cutoff(fobject, "African_American") plot(cpc) rf_model <- ranger::ranger(Two_yr_Recidivism ~ ., data = compas, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = compas[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = compas$Ethnicity, privileged = "Caucasian" ) cpc <- ceteris_paribus_cutoff(fobject, "African_American") plot(cpc)
data("compas") # positive outcome - not being recidivist two_yr_recidivism <- factor(compas$Two_yr_Recidivism, levels = c(1, 0)) y_numeric <- as.numeric(two_yr_recidivism) - 1 compas$Two_yr_Recidivism <- two_yr_recidivism lm_model <- glm(Two_yr_Recidivism ~ ., data = compas, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = compas[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = compas$Ethnicity, privileged = "Caucasian" ) cpc <- ceteris_paribus_cutoff(fobject, "African_American") plot(cpc) rf_model <- ranger::ranger(Two_yr_Recidivism ~ ., data = compas, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = compas[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = compas$Ethnicity, privileged = "Caucasian" ) cpc <- ceteris_paribus_cutoff(fobject, "African_American") plot(cpc)
Choose metric from parity loss metrics and plot it for every model. The one with the least parity loss is more fair in terms of this particular metric.
## S3 method for class 'chosen_metric' plot(x, ...)
## S3 method for class 'chosen_metric' plot(x, ...)
x |
object of class |
... |
other objects of class |
ggplot2
object
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) cm <- choose_metric(fobject, "TPR") plot(cm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) cm <- choose_metric(fobject, "TPR") plot(cm)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) cm <- choose_metric(fobject, "TPR") plot(cm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) cm <- choose_metric(fobject, "TPR") plot(cm)
Heatmap shows all parity loss metrics across all models while displaying similarity between variables (in form of dendograms). All metrics are visible. Some have identical values as it should be in terms of their parity loss (eg. TPR parity loss == FNR parity loss, because TPR = 1 - FNR ). NA's in metrics are gray.
## S3 method for class 'fairness_heatmap' plot( x, ..., midpoint = NULL, title = NULL, subtitle = NULL, text = TRUE, text_size = 3, flip_axis = FALSE )
## S3 method for class 'fairness_heatmap' plot( x, ..., midpoint = NULL, title = NULL, subtitle = NULL, text = TRUE, text_size = 3, flip_axis = FALSE )
x |
|
... |
other |
midpoint |
numeric, midpoint on gradient scale |
title |
character, title of the plot |
subtitle |
character, subtitle of the plot |
text |
logical, default |
text_size |
numeric, size of text |
flip_axis |
logical, whether to change axis with metrics on axis with models |
list of ggplot2
objects
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1, seed = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fh <- fairness_heatmap(fobject) plot(fh)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1, seed = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fh <- fairness_heatmap(fobject) plot(fh)
Plot fairness check enables to look how big differences are between base subgroup (privileged) and unprivileged ones.
If bar plot reaches red zone it means that for this subgroup fairness goal is not satisfied. Multiple subgroups and models can be plotted.
Red and green zone boundary can be moved through epsilon parameter, that needs to be passed through fairness_check
.
## S3 method for class 'fairness_object' plot(x, ..., fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
## S3 method for class 'fairness_object' plot(x, ..., fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
x |
|
... |
other plot parameters |
fairness_metrics |
character, vector of metrics. Subset of fairness metrics to be used. The full set is defined as c("ACC", "TPR", "PPV", "FPR", "STP"). |
ggplot2
object
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) plot(fobject) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, max.depth = 3, num.trees = 100, seed = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_rf, fobject) plot(fobject) # custom print plot(fobject, fairness_metrics = c("ACC", "TPR"))
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) plot(fobject) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, max.depth = 3, num.trees = 100, seed = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_rf, fobject) plot(fobject) # custom print plot(fobject, fairness_metrics = c("ACC", "TPR"))
Plot pca calculated on fairness_object metrics. Similar models and metrics should be close to each other. Plot doesn't work on multiple fairness_pca
objects.
Unlike in other plots here other fairness_pca
objects cannot be added.
## S3 method for class 'fairness_pca' plot(x, scale = 0.5, ...)
## S3 method for class 'fairness_pca' plot(x, scale = 0.5, ...)
x |
|
scale |
scaling loadings plot, from 0 to 1 |
... |
other plot parameters |
ggplot2
object
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fpca <- fairness_pca(fobject) plot(fpca)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fpca <- fairness_pca(fobject) plot(fpca)
Makes radar plot showing different fairness metrics that allow to compare models.
## S3 method for class 'fairness_radar' plot(x, ...)
## S3 method for class 'fairness_radar' plot(x, ...)
x |
|
... |
other plot parameters |
ggplot2
object
code based on ModelOriented auditor package, thanks agosiewska! https://modeloriented.github.io/auditor/
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) fradar <- fairness_radar(fobject, fairness_metrics = c( "ACC", "STP", "TNR", "TPR", "PPV" )) plot(fradar) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) fradar <- fairness_radar(fobject, fairness_metrics = c( "ACC", "STP", "TNR", "TPR", "PPV" )) plot(fradar)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) fradar <- fairness_radar(fobject, fairness_metrics = c( "ACC", "STP", "TNR", "TPR", "PPV" )) plot(fradar) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) fradar <- fairness_radar(fobject, fairness_metrics = c( "ACC", "STP", "TNR", "TPR", "PPV" )) plot(fradar)
Please note that this is experimental approach. Plot fairness check regression enables to look how big differences are between base subgroup (privileged) and unprivileged ones.
If bar plot reaches red zone it means that for this subgroup fairness goal is not satisfied. Multiple subgroups and models can be plotted.
Red and green zone boundary can be moved through epsilon parameter, that needs to be passed through fairness_check
.
## S3 method for class 'fairness_regression_object' plot(x, ...)
## S3 method for class 'fairness_regression_object' plot(x, ...)
x |
|
... |
other plot parameters |
ggplot2
object
set.seed(123) data <- data.frame( x = c(rnorm(500, 500, 100), rnorm(500, 400, 200)), pop = c(rep("A", 500), rep("B", 500)) ) data$y <- rnorm(length(data$x), 1.5 * data$x, 100) # create model model <- lm(y ~ ., data = data) # create explainer exp <- DALEX::explain(model, data = data, y = data$y) # create fobject fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A") # results fobject plot(fobject) model_ranger <- ranger::ranger(y ~ ., data = data, seed = 123) exp2 <- DALEX::explain(model_ranger, data = data, y = data$y) fobject <- fairness_check_regression(exp2, fobject) # results fobject plot(fobject)
set.seed(123) data <- data.frame( x = c(rnorm(500, 500, 100), rnorm(500, 400, 200)), pop = c(rep("A", 500), rep("B", 500)) ) data$y <- rnorm(length(data$x), 1.5 * data$x, 100) # create model model <- lm(y ~ ., data = data) # create explainer exp <- DALEX::explain(model, data = data, y = data$y) # create fobject fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A") # results fobject plot(fobject) model_ranger <- ranger::ranger(y ~ ., data = data, seed = 123) exp2 <- DALEX::explain(model_ranger, data = data, y = data$y) fobject <- fairness_check_regression(exp2, fobject) # results fobject plot(fobject)
Plot chosen metric in group. Notice how models are treating different subgroups.
Compare models both in fairness metrics and in performance. Parity loss can be enabled when creating group_metric
object.
## S3 method for class 'group_metric' plot(x, ...)
## S3 method for class 'group_metric' plot(x, ...)
x |
object of class group_metric |
... |
other group_metric objects and other parameters |
list of ggplot2
objects
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) plot(gm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) plot(gm)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) plot(gm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) plot(gm)
Plot metric scores
## S3 method for class 'metric_scores' plot(x, ...)
## S3 method for class 'metric_scores' plot(x, ...)
x |
|
... |
other plot parameters |
ggplot2
object
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP")) plot(ms) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP")) plot(ms)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP")) plot(ms) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP")) plot(ms)
visualize fairness and model metric at the same time. Note that fairness metric parity scale is reversed so that the best models are in top right corner.
## S3 method for class 'performance_and_fairness' plot(x, ...)
## S3 method for class 'performance_and_fairness' plot(x, ...)
x |
|
... |
other plot parameters |
ggplot
object
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) paf <- performance_and_fairness(fobject) plot(paf) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) paf <- performance_and_fairness(fobject) plot(paf)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) paf <- performance_and_fairness(fobject) plot(paf) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) paf <- performance_and_fairness(fobject) plot(paf)
Stacked metrics is like plot for chosen_metric
but with all unique metrics stacked on top of each other.
Metrics containing NA's will be dropped to enable fair comparison.
## S3 method for class 'stacked_metrics' plot(x, ...)
## S3 method for class 'stacked_metrics' plot(x, ...)
x |
|
... |
other plot parameters |
ggplot2
object
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) sm <- stack_metrics(fobject) plot(sm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) sm <- stack_metrics(fobject) plot(sm)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) sm <- stack_metrics(fobject) plot(sm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) sm <- stack_metrics(fobject) plot(sm)
Function aggregates all pre-processing algorithms for bias mitigation. User passes unified arguments and specifies type to receive transformed data.frame
pre_process_data(data, protected, y, type = "resample_uniform", ...)
pre_process_data(data, protected, y, type = "resample_uniform", ...)
data |
|
protected |
factor, protected attribute (sensitive variable) containing information about gender, race etc... |
y |
numeric, numeric values of predicted variable. 1 should denote favorable outcome. |
type |
character, type of pre-processing algorithm to be used, one of:
|
... |
other parameters passed to pre-processing algorithms |
modified data (data.frame
). In case of type = 'reweight' data has feature '_weights_' containing weights that need to be passed to model.
In other cases data is ready to be passed as training data to a model.
data("german") pre_process_data(german, german$Sex, as.numeric(german$Risk) - 1, type = "disparate_impact_remover", features_to_transform = "Age" )
data("german") pre_process_data(german, german$Sex, as.numeric(german$Risk) - 1, type = "disparate_impact_remover", features_to_transform = "Age" )
Print all cutoffs
## S3 method for class 'all_cutoffs' print(x, ..., label = NULL)
## S3 method for class 'all_cutoffs' print(x, ..., label = NULL)
x |
|
... |
other print parameters |
label |
character, label of model to plot. Default NULL. If default prints all models. |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) ac <- all_cutoffs(fobject, fairness_metrics = c( "TPR", "FPR" ) ) print(ac)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) ac <- all_cutoffs(fobject, fairness_metrics = c( "TPR", "FPR" ) ) print(ac)
Print ceteris paribus cutoff
## S3 method for class 'ceteris_paribus_cutoff' print(x, ...)
## S3 method for class 'ceteris_paribus_cutoff' print(x, ...)
x |
|
... |
other print parameters |
data("german") german <- german[1:500, ] y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) ceteris_paribus_cutoff(fobject, "female")
data("german") german <- german[1:500, ] y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) ceteris_paribus_cutoff(fobject, "female")
Choose metric from parity loss metrics and plot it for every model. The one with the least parity loss is more fair in terms of this particular metric.
## S3 method for class 'chosen_metric' print(x, ...)
## S3 method for class 'chosen_metric' print(x, ...)
x |
|
... |
other print parameters |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) cm <- choose_metric(fobject, "TPR") print(cm)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) cm <- choose_metric(fobject, "TPR") print(cm)
Print fairness heatmap
## S3 method for class 'fairness_heatmap' print(x, ...)
## S3 method for class 'fairness_heatmap' print(x, ...)
x |
|
... |
other print parameters |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fh <- fairness_heatmap(fobject) print(fh)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fh <- fairness_heatmap(fobject) print(fh)
Print Fairness Object
## S3 method for class 'fairness_object' print( x, ..., colorize = TRUE, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"), fair_level = NULL, border_width = 1, loss_aggregating_function = NULL )
## S3 method for class 'fairness_object' print( x, ..., colorize = TRUE, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"), fair_level = NULL, border_width = 1, loss_aggregating_function = NULL )
x |
|
... |
other parameters |
colorize |
logical, whether information about metrics should be in color or not |
fairness_metrics |
character, vector of metrics. Subset of fairness metrics to be used. The full set is defined as c("ACC", "TPR", "PPV", "FPR", "STP"). |
fair_level |
numerical, amount of fairness metrics that need do be passed in order to call a model fair. Default is 5. |
border_width |
numerical, width of border between fair and unfair models.
If |
loss_aggregating_function |
function, loss aggregating function that may be provided. It takes metric scores as vector and aggregates them to one value. The default is 'Total loss' that measures the total sum of distances to 1. It may be interpreted as sum of bar heights in fairness_check. |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, max.depth = 3, num.trees = 100, seed = 1, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) print(fobject) # custom print print(fobject, fairness_metrics = c("ACC", "TPR"), # amount of metrics to be printed border_width = 0, # in our case 2/2 will be printed in green and 1/2 in red loss_aggregating_function = function(x) sum(abs(x)) + 10 ) # custom loss function - takes vector
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, max.depth = 3, num.trees = 100, seed = 1, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric ) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) print(fobject) # custom print print(fobject, fairness_metrics = c("ACC", "TPR"), # amount of metrics to be printed border_width = 0, # in our case 2/2 will be printed in green and 1/2 in red loss_aggregating_function = function(x) sum(abs(x)) + 10 ) # custom loss function - takes vector
Print principal components after using pca on fairness object
## S3 method for class 'fairness_pca' print(x, ...)
## S3 method for class 'fairness_pca' print(x, ...)
x |
|
... |
other print parameters |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fpca <- fairness_pca(fobject) print(fpca)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) fpca <- fairness_pca(fobject) print(fpca)
Print fairness radar
## S3 method for class 'fairness_radar' print(x, ...)
## S3 method for class 'fairness_radar' print(x, ...)
x |
|
... |
other print parameters |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) fradar <- fairness_radar(fobject) print(fradar)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) fradar <- fairness_radar(fobject) print(fradar)
Print Fairness Regression Object
## S3 method for class 'fairness_regression_object' print(x, ..., colorize = TRUE)
## S3 method for class 'fairness_regression_object' print(x, ..., colorize = TRUE)
x |
|
... |
other parameters |
colorize |
logical, whether information about metrics should be in color or not |
set.seed(123) data <- data.frame( x = c(rnorm(500, 500, 100), rnorm(500, 400, 200)), pop = c(rep("A", 500), rep("B", 500)) ) data$y <- rnorm(length(data$x), 1.5 * data$x, 100) # create model model <- lm(y ~ ., data = data) # create explainer exp <- DALEX::explain(model, data = data, y = data$y) # create fobject fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A") # results fobject model_ranger <- ranger::ranger(y ~ ., data = data, seed = 123) exp2 <- DALEX::explain(model_ranger, data = data, y = data$y) fobject <- fairness_check_regression(exp2, fobject) # results fobject
set.seed(123) data <- data.frame( x = c(rnorm(500, 500, 100), rnorm(500, 400, 200)), pop = c(rep("A", 500), rep("B", 500)) ) data$y <- rnorm(length(data$x), 1.5 * data$x, 100) # create model model <- lm(y ~ ., data = data) # create explainer exp <- DALEX::explain(model, data = data, y = data$y) # create fobject fobject <- fairness_check_regression(exp, protected = data$pop, privileged = "A") # results fobject model_ranger <- ranger::ranger(y ~ ., data = data, seed = 123) exp2 <- DALEX::explain(model_ranger, data = data, y = data$y) fobject <- fairness_check_regression(exp2, fobject) # results fobject
Print group metric
## S3 method for class 'group_metric' print(x, ...)
## S3 method for class 'group_metric' print(x, ...)
x |
|
... |
other print parameters |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) print(gm)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) gm <- group_metric(fobject, "TPR", "f1", parity_loss = TRUE) print(gm)
Print metric scores data
## S3 method for class 'metric_scores' print(x, ...)
## S3 method for class 'metric_scores' print(x, ...)
x |
|
... |
other print parameters |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) ms <- metric_scores(fobject, fairness_metrics = c("TPR", "STP", "ACC")) ms
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) ms <- metric_scores(fobject, fairness_metrics = c("TPR", "STP", "ACC")) ms
Print performance and fairness
## S3 method for class 'performance_and_fairness' print(x, ...)
## S3 method for class 'performance_and_fairness' print(x, ...)
x |
|
... |
other print parameters |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) paf <- performance_and_fairness(fobject) paf
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) # same explainers with different cutoffs for female fobject <- fairness_check(explainer_lm, explainer_rf, fobject, protected = german$Sex, privileged = "male", cutoff = list(female = 0.4), label = c("lm_2", "rf_2") ) paf <- performance_and_fairness(fobject) paf
Stack metrics sums parity loss metrics for all models. Higher value of stacked metrics means the model is less fair (has higher bias) for subgroups from protected vector.
## S3 method for class 'stacked_metrics' print(x, ...)
## S3 method for class 'stacked_metrics' print(x, ...)
x |
|
... |
other print parameters |
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) sm <- stack_metrics(fobject) print(sm)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200, num.threads = 1 ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, explainer_rf, protected = german$Sex, privileged = "male" ) sm <- stack_metrics(fobject) print(sm)
Regression metrics
regression_metrics(explainer, protected, privileged)
regression_metrics(explainer, protected, privileged)
explainer |
object created with |
protected |
factor, protected variable (also called sensitive attribute), containing privileged and unprivileged groups |
privileged |
factor/character, one value of |
data.frame
Method of bias mitigation. Similarly to reweight
this method computes desired number of observations if the protected variable is independent
from y and on this basis decides if this subgroup with certain class (+ or -) should be more or less numerous. Than performs oversampling or undersampling depending on the case.
If type of sampling is set to 'preferential' and probs are provided than instead of uniform sampling preferential sampling will be performed. Preferential sampling depending on the case
will sample observations close to border or far from border.
resample(protected, y, type = "uniform", probs = NULL, cutoff = 0.5)
resample(protected, y, type = "uniform", probs = NULL, cutoff = 0.5)
protected |
factor, protected variables with subgroups as levels (sensitive attributes) |
y |
numeric, vector with classes 0 and 1, where 1 means favorable class. |
type |
character, either (default) 'uniform' or 'preferential' |
probs |
numeric, vector with probabilities for preferential sampling |
cutoff |
numeric, threshold for probabilities |
numeric vector of indexes
This method was implemented based on Kamiran, Calders 2011 https://link.springer.com/content/pdf/10.1007/s10115-011-0463-8.pdf
data("german") data <- german data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old")) y_numeric <- as.numeric(data$Risk) - 1 rf <- ranger::ranger(Risk ~ ., data = data, probability = TRUE, num.trees = 50, num.threads = 1, seed = 123 ) u_indexes <- resample(data$Age, y = y_numeric) rf_u <- ranger::ranger(Risk ~ ., data = data[u_indexes, ], probability = TRUE, num.trees = 50, num.threads = 1, seed = 123 ) explainer_rf <- DALEX::explain(rf, data = data[, -1], y = y_numeric, label = "not_sampled" ) explainer_rf_u <- DALEX::explain(rf_u, data = data[, -1], y = y_numeric, label = "sampled_uniform") fobject <- fairness_check(explainer_rf, explainer_rf_u, protected = data$Age, privileged = "old" ) fobject plot(fobject) p_indexes <- resample(data$Age, y = y_numeric, type = "preferential", probs = explainer_rf$y_hat) rf_p <- ranger::ranger(Risk ~ ., data = data[p_indexes, ], probability = TRUE, num.trees = 50, num.threads = 1, seed = 123 ) explainer_rf_p <- DALEX::explain(rf_p, data = data[, -1], y = y_numeric, label = "sampled_preferential" ) fobject <- fairness_check(explainer_rf, explainer_rf_u, explainer_rf_p, protected = data$Age, privileged = "old" ) fobject plot(fobject)
data("german") data <- german data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old")) y_numeric <- as.numeric(data$Risk) - 1 rf <- ranger::ranger(Risk ~ ., data = data, probability = TRUE, num.trees = 50, num.threads = 1, seed = 123 ) u_indexes <- resample(data$Age, y = y_numeric) rf_u <- ranger::ranger(Risk ~ ., data = data[u_indexes, ], probability = TRUE, num.trees = 50, num.threads = 1, seed = 123 ) explainer_rf <- DALEX::explain(rf, data = data[, -1], y = y_numeric, label = "not_sampled" ) explainer_rf_u <- DALEX::explain(rf_u, data = data[, -1], y = y_numeric, label = "sampled_uniform") fobject <- fairness_check(explainer_rf, explainer_rf_u, protected = data$Age, privileged = "old" ) fobject plot(fobject) p_indexes <- resample(data$Age, y = y_numeric, type = "preferential", probs = explainer_rf$y_hat) rf_p <- ranger::ranger(Risk ~ ., data = data[p_indexes, ], probability = TRUE, num.trees = 50, num.threads = 1, seed = 123 ) explainer_rf_p <- DALEX::explain(rf_p, data = data[, -1], y = y_numeric, label = "sampled_preferential" ) fobject <- fairness_check(explainer_rf, explainer_rf_u, explainer_rf_p, protected = data$Age, privileged = "old" ) fobject plot(fobject)
Function returns weights for model training. The purpose of this weights is to mitigate bias in statistical parity. In fact this could potentially worsen the overall performance in other fairness metrics. This affects also model's performance metrics (accuracy).
reweight(protected, y)
reweight(protected, y)
protected |
factor, protected variables with subgroups as levels (sensitive attributes) |
y |
numeric, vector with classes 0 and 1, where 1 means favorable class. |
Method produces weights for each subgroup for each class. Firstly assumes that protected variable and class are independent and calculates expected probability of this certain event (that subgroup == a and class = c). Than it calculates the actual probability of this event based on empirical data. Finally the weight is quotient of those probabilities
numeric, vector of weights
This method was implemented based on Kamiran, Calders 2011 https://link.springer.com/content/pdf/10.1007/s10115-011-0463-8.pdf
data("german") data <- german data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old")) data$Risk <- as.numeric(data$Risk) - 1 # training 2 models weights <- reweight(protected = data$Age, y = data$Risk) gbm_model <- gbm::gbm(Risk ~ ., data = data) gbm_model_weighted <- gbm::gbm(Risk ~ ., data = data, weights = weights) gbm_explainer <- DALEX::explain(gbm_model, data = data[, -1], y = data$Risk) gbm_weighted_explainer <- DALEX::explain(gbm_model_weighted, data = data[, -1], y = data$Risk) fobject <- fairness_check(gbm_explainer, gbm_weighted_explainer, protected = data$Age, privileged = "old", label = c("original", "weighted") ) # fairness check fobject plot(fobject) # radar plot(fairness_radar(fobject))
data("german") data <- german data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old")) data$Risk <- as.numeric(data$Risk) - 1 # training 2 models weights <- reweight(protected = data$Age, y = data$Risk) gbm_model <- gbm::gbm(Risk ~ ., data = data) gbm_model_weighted <- gbm::gbm(Risk ~ ., data = data, weights = weights) gbm_explainer <- DALEX::explain(gbm_model, data = data[, -1], y = data$Risk) gbm_weighted_explainer <- DALEX::explain(gbm_model_weighted, data = data[, -1], y = data$Risk) fobject <- fairness_check(gbm_explainer, gbm_weighted_explainer, protected = data$Age, privileged = "old", label = c("original", "weighted") ) # fairness check fobject plot(fobject) # radar plot(fairness_radar(fobject))
Reject Option based Classifier is post-processing bias mitigation method. Method changes labels of favorable, privileged and close to cutoff observations to unfavorable and the opposite for unprivileged observations (changing unfavorable and close to cutoff observations to favorable, more in details). By this potentially wrongfully labeled observations are assigned different labels. Note that in y in DALEX explainer 1 should indicate favorable outcome.
roc_pivot(explainer, protected, privileged, cutoff = 0.5, theta = 0.1)
roc_pivot(explainer, protected, privileged, cutoff = 0.5, theta = 0.1)
explainer |
created with |
protected |
factor, protected variables with subgroups as levels (sensitive attributes) |
privileged |
factor/character, level in protected denoting privileged subgroup |
cutoff |
numeric, threshold for all subgroups |
theta |
numeric, variable specifies maximal euclidean distance to cutoff resulting ing label switch |
Method implemented implemented based on article (Kamiran, Karim, Zhang 2012). In original implementation labels should be switched. Due to specific DALEX methods
probabilities (y_hat) are assigned value in equal distance but other side of cutoff. The method changes explainers y_hat values in two cases.
1. When unprivileged subgroup is within (cutoff - theta, cutoff)
2. When privileged subgroup is within (cutoff, cutoff + theta)
DALEX explainer
with changed y_hat. This explainer should be used ONLY by fairmodels as it contains unchanged
predict function (changed predictions (y_hat) can possibly be invisible by DALEX functions and methods).
Kamiran, Karim, Zhang 2012 https://ieeexplore.ieee.org/document/6413831/ ROC method
data("german") data <- german data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old")) y_numeric <- as.numeric(data$Risk) - 1 lr_model <- stats::glm(Risk ~ ., data = data, family = binomial()) lr_explainer <- DALEX::explain(lr_model, data = data[, -1], y = y_numeric) fobject <- fairness_check(lr_explainer, protected = data$Age, privileged = "old" ) plot(fobject) lr_explainer_fixed <- roc_pivot(lr_explainer, protected = data$Age, privileged = "old" ) fobject2 <- fairness_check(lr_explainer_fixed, fobject, protected = data$Age, privileged = "old", label = "lr_fixed" ) fobject2 plot(fobject2)
data("german") data <- german data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old")) y_numeric <- as.numeric(data$Risk) - 1 lr_model <- stats::glm(Risk ~ ., data = data, family = binomial()) lr_explainer <- DALEX::explain(lr_model, data = data[, -1], y = y_numeric) fobject <- fairness_check(lr_explainer, protected = data$Age, privileged = "old" ) plot(fobject) lr_explainer_fixed <- roc_pivot(lr_explainer, protected = data$Age, privileged = "old" ) fobject2 <- fairness_check(lr_explainer_fixed, fobject, protected = data$Age, privileged = "old", label = "lr_fixed" ) fobject2 plot(fobject2)
Stack metrics sums parity loss metrics for all models. Higher value of stacked metrics means the model is less fair (has higher bias) for subgroups from protected vector.
stack_metrics(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
stack_metrics(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
x |
object of class |
fairness_metrics |
character, vector of fairness parity_loss metric names to include in plot. Full names are provided in |
stacked_metrics
object. It contains data.frame
with information about score for each metric and model.
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) sm <- stack_metrics(fobject) plot(sm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) sm <- stack_metrics(fobject) plot(sm)
data("german") y_numeric <- as.numeric(german$Risk) - 1 lm_model <- glm(Risk ~ ., data = german, family = binomial(link = "logit") ) explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_lm, protected = german$Sex, privileged = "male" ) sm <- stack_metrics(fobject) plot(sm) rf_model <- ranger::ranger(Risk ~ ., data = german, probability = TRUE, num.trees = 200 ) explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric) fobject <- fairness_check(explainer_rf, fobject) sm <- stack_metrics(fobject) plot(sm)