Title: | Model Agnostic Instance Level Variable Attributions |
---|---|
Description: | Model agnostic tool for decomposition of predictions from black boxes. Supports additive attributions and attributions with interactions. The Break Down Table shows contributions of every variable to a final prediction. The Break Down Plot presents variable contributions in a concise graphical way. This package works for classification and regression models. It is an extension of the 'breakDown' package (Staniak and Biecek 2018) <doi:10.32614/RJ-2018-072>, with new and faster strategies for orderings. It supports interactions in explanations and has interactive visuals (implemented with 'D3.js' library). The methodology behind is described in the 'iBreakDown' article (Gosiewska and Biecek 2019) <arXiv:1903.11420> This package is a part of the 'DrWhy.AI' universe (Biecek 2018) <arXiv:1806.08915>. |
Authors: | Przemyslaw Biecek [aut, cre] , Alicja Gosiewska [aut] , Hubert Baniecki [aut] , Adam Izdebski [aut], Dariusz Komosinski [ctb] |
Maintainer: | Przemyslaw Biecek <[email protected]> |
License: | GPL-3 |
Version: | 2.1.2 |
Built: | 2025-01-23 03:09:31 UTC |
Source: | https://github.com/modeloriented/ibreakdown |
This function finds Variable Attributions via Sequential Variable Conditioning.
It calls either local_attributions
for additive attributions
or local_interactions
for attributions with interactions.
break_down(x, ..., interactions = FALSE) ## S3 method for class 'explainer' break_down(x, new_observation, ..., interactions = FALSE) ## Default S3 method: break_down( x, data, predict_function = predict, new_observation, keep_distributions = FALSE, order = NULL, label = class(x)[1], ..., interactions = FALSE )
break_down(x, ..., interactions = FALSE) ## S3 method for class 'explainer' break_down(x, new_observation, ..., interactions = FALSE) ## Default S3 method: break_down( x, data, predict_function = predict, new_observation, keep_distributions = FALSE, order = NULL, label = class(x)[1], ..., interactions = FALSE )
x |
an explainer created with function |
... |
parameters passed to |
interactions |
shall interactions be included? |
new_observation |
a new observation with columns that correspond to variables used in the model. |
data |
validation dataset, will be extracted from |
predict_function |
predict function, will be extracted from |
keep_distributions |
if |
order |
if not |
label |
name of the model. By default it is extracted from the 'class' attribute of the model. |
an object of the break_down
class.
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
local_attributions
, local_interactions
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- break_down(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm, max_features = 3) ## Not run: ## Not run: library("randomForest") set.seed(1313) # example with interaction # classification for HR data model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- break_down(explainer_rf, new_observation) head(bd_rf) plot(bd_rf) ## End(Not run)
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- break_down(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm, max_features = 3) ## Not run: ## Not run: library("randomForest") set.seed(1313) # example with interaction # classification for HR data model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- break_down(explainer_rf, new_observation) head(bd_rf) plot(bd_rf) ## End(Not run)
This function calculates the break down algorithm for B
random orderings.
Then it calculates the distribution of attributions for these different orderings.
Note that the shap()
function is just a simplified interface to the break_down_uncertainty()
function
with a default value set to B=25
.
break_down_uncertainty(x, ..., keep_distributions = TRUE, B = 10) ## S3 method for class 'explainer' break_down_uncertainty( x, new_observation, ..., keep_distributions = TRUE, B = 10 ) ## Default S3 method: break_down_uncertainty( x, data, predict_function = predict, new_observation, label = class(x)[1], ..., path = NULL, keep_distributions = TRUE, B = 10 ) shap(x, ..., B = 25)
break_down_uncertainty(x, ..., keep_distributions = TRUE, B = 10) ## S3 method for class 'explainer' break_down_uncertainty( x, new_observation, ..., keep_distributions = TRUE, B = 10 ) ## Default S3 method: break_down_uncertainty( x, data, predict_function = predict, new_observation, label = class(x)[1], ..., path = NULL, keep_distributions = TRUE, B = 10 ) shap(x, ..., B = 25)
x |
an explainer created with function |
... |
other parameters. |
keep_distributions |
if |
B |
number of random paths |
new_observation |
a new observation with columns that correspond to variables used in the model. |
data |
validation dataset, will be extracted from |
predict_function |
predict function, will be extracted from |
label |
name of the model. By default it's extracted from the 'class' attribute of the model. |
path |
if specified, then this path will be highlighed on the plot. Use |
an object of the break_down_uncertainty
class.
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
break_down
, local_attributions
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") # there is no explanation level uncertanity linked with additive models bd_glm <- break_down_uncertainty(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm) ## Not run: ## Not run: library("randomForest") set.seed(1313) model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000, 1:5]) bd_rf <- break_down_uncertainty(explainer_rf, new_observation) bd_rf plot(bd_rf) # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000, 2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,]) bd_rf plot(bd_rf) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,], path = 1:5) plot(bd_rf) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,], path = c("floor", "no.rooms", "district", "construction.year", "surface")) plot(bd_rf) bd <- break_down(explainer_rf, apartments_test[1,]) plot(bd) s <- shap(explainer_rf, apartments_test[1,]) plot(s) ## End(Not run)
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") # there is no explanation level uncertanity linked with additive models bd_glm <- break_down_uncertainty(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm) ## Not run: ## Not run: library("randomForest") set.seed(1313) model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000, 1:5]) bd_rf <- break_down_uncertainty(explainer_rf, new_observation) bd_rf plot(bd_rf) # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000, 2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,]) bd_rf plot(bd_rf) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,], path = 1:5) plot(bd_rf) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,], path = c("floor", "no.rooms", "district", "construction.year", "surface")) plot(bd_rf) bd <- break_down(explainer_rf, apartments_test[1,]) plot(bd) s <- shap(explainer_rf, apartments_test[1,]) plot(s) ## End(Not run)
Generic function describe
generates natural language explanations based on
break_down
and shap
explanations, what enhances their interpretability.
describe(x, nonsignificance_treshold = 0.15, ...) ## S3 method for class 'break_down' describe( x, nonsignificance_treshold = 0.15, ..., label = NULL, short_description = FALSE, display_values = FALSE, display_numbers = FALSE, display_distribution_details = FALSE, display_shap = FALSE ) ## S3 method for class 'break_down_uncertainty' describe( x, nonsignificance_treshold = 0.15, ..., label = NULL, short_description = FALSE, display_values = FALSE, display_numbers = FALSE, display_distribution_details = FALSE, display_shap = FALSE )
describe(x, nonsignificance_treshold = 0.15, ...) ## S3 method for class 'break_down' describe( x, nonsignificance_treshold = 0.15, ..., label = NULL, short_description = FALSE, display_values = FALSE, display_numbers = FALSE, display_distribution_details = FALSE, display_shap = FALSE ) ## S3 method for class 'break_down_uncertainty' describe( x, nonsignificance_treshold = 0.15, ..., label = NULL, short_description = FALSE, display_values = FALSE, display_numbers = FALSE, display_distribution_details = FALSE, display_shap = FALSE )
x |
an explanation created with |
nonsignificance_treshold |
a numeric specifying a threshold for variable importance |
... |
other arguments |
label |
a character string describing model's prediction |
short_description |
a boolean, returns a short description |
display_values |
a boolean, displays variables' values |
display_numbers |
a boolean, displays a description containing numerical values |
display_distribution_details |
a boolean, displays details about the distribution of model's predictions |
display_shap |
a boolean, adds information about variables' average contribution. Use only with |
Function describe
generates a textual explanations by extracting information from
a break_down
or shap
explanation. It makes an argument justifying why
the model's prediction is lower or higher, than it's average prediction. The description consists of
an introduction, argumenation and summary making use from the claim, support, evidence argumentation
structure, as recomended for the World Universities Debating style.
The function first selects one of four different scenarios, due to
nonsignificance_treshold
. The chosen scenario can be one of the following:
1. Model's prediction for the selected instance is significantly higher than the average prediction.
2. Model's prediction is significantly lower.
3. Model's prediction is close to it's average prediction, however there are significant
variables counteracting with each other
4. Model's prediction is close to it's average prediction and all the variables are rather nonsignificant.
Then an explanation due to the chosen scenario is generated.
A character string of textual explanation
library("DALEX") library("randomForest") library("iBreakDown") titanic <- na.omit(titanic) model_titanic_rf <- randomForest(survived == "yes" ~ gender + age + class + embarked + fare + sibsp + parch, data = titanic) explain_titanic_rf <- explain(model_titanic_rf, data = titanic[ ,-9], y = titanic$survived == "yes", label = "Random Forest v7") bd_explanation <- break_down(explain_titanic_rf, titanic[1, ], keep_distributions = TRUE) plot(bd_explanation) description <- describe(bd_explanation, label = "the passanger will survive with probability", short_description = FALSE, display_values = TRUE, display_numbers = TRUE, display_distribution_details = FALSE) description library("DALEX") library("iBreakDown") titanic <- na.omit(titanic) model_titanic_glm <- glm(titanic$survived == "yes" ~ age + gender + class + fare + sibsp, data = titanic[ ,-9], family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic[,-9], y = titanic$survived == "yes", label = "glm") passanger <- titanic[1, -9] shap_glm <- shap(explain_titanic_glm, passanger) plot(shap_glm) describe(shap_glm, label = "the selected passanger survives with probability", display_shap = TRUE, display_numbers = TRUE)
library("DALEX") library("randomForest") library("iBreakDown") titanic <- na.omit(titanic) model_titanic_rf <- randomForest(survived == "yes" ~ gender + age + class + embarked + fare + sibsp + parch, data = titanic) explain_titanic_rf <- explain(model_titanic_rf, data = titanic[ ,-9], y = titanic$survived == "yes", label = "Random Forest v7") bd_explanation <- break_down(explain_titanic_rf, titanic[1, ], keep_distributions = TRUE) plot(bd_explanation) description <- describe(bd_explanation, label = "the passanger will survive with probability", short_description = FALSE, display_values = TRUE, display_numbers = TRUE, display_distribution_details = FALSE) description library("DALEX") library("iBreakDown") titanic <- na.omit(titanic) model_titanic_glm <- glm(titanic$survived == "yes" ~ age + gender + class + fare + sibsp, data = titanic[ ,-9], family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic[,-9], y = titanic$survived == "yes", label = "glm") passanger <- titanic[1, -9] shap_glm <- shap(explain_titanic_glm, passanger) plot(shap_glm) describe(shap_glm, label = "the selected passanger survives with probability", display_shap = TRUE, display_numbers = TRUE)
This function finds Variable attributions via Sequential Variable Conditioning.
The complexity of this function is O(2*p).
This function works in a similar way to step-up and step-down greedy approximations in function break_down
.
The main difference is that in the first step the order of variables is determined.
And in the second step the impact is calculated.
local_attributions(x, ...) ## S3 method for class 'explainer' local_attributions(x, new_observation, keep_distributions = FALSE, ...) ## Default S3 method: local_attributions( x, data, predict_function = predict, new_observation, label = class(x)[1], keep_distributions = FALSE, order = NULL, ... )
local_attributions(x, ...) ## S3 method for class 'explainer' local_attributions(x, new_observation, keep_distributions = FALSE, ...) ## Default S3 method: local_attributions( x, data, predict_function = predict, new_observation, label = class(x)[1], keep_distributions = FALSE, order = NULL, ... )
x |
an explainer created with function |
... |
other parameters. |
new_observation |
a new observation with columns that correspond to variables used in the model. |
keep_distributions |
if |
data |
validation dataset, will be extracted from |
predict_function |
predict function, will be extracted from |
label |
name of the model. By default it's extracted from the 'class' attribute of the model. |
order |
if not |
an object of the break_down
class.
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
break_down
, local_interactions
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- local_attributions(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm, max_features = 3) ## Not run: ## Not run: library("randomForest") set.seed(1313) # example with interaction # classification for HR data model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- local_attributions(explainer_rf, new_observation) bd_rf plot(bd_rf) plot(bd_rf, baseline = 0) # example for regression - apartment prices # here we do not have interactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- local_attributions(explainer_rf, apartments_test[1,]) bd_rf plot(bd_rf, digits = 1) bd_rf <- local_attributions(explainer_rf, apartments_test[1,], keep_distributions = TRUE) plot(bd_rf, plot_distributions = TRUE) ## End(Not run)
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- local_attributions(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm, max_features = 3) ## Not run: ## Not run: library("randomForest") set.seed(1313) # example with interaction # classification for HR data model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- local_attributions(explainer_rf, new_observation) bd_rf plot(bd_rf) plot(bd_rf, baseline = 0) # example for regression - apartment prices # here we do not have interactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- local_attributions(explainer_rf, apartments_test[1,]) bd_rf plot(bd_rf, digits = 1) bd_rf <- local_attributions(explainer_rf, apartments_test[1,], keep_distributions = TRUE) plot(bd_rf, plot_distributions = TRUE) ## End(Not run)
This function implements decomposition of model predictions with identification
of interactions.
The complexity of this function is O(2*p) for additive models and O(2*p^2) for interactions.
This function works in a similar way to step-up and step-down greedy approximations in function break_down()
.
The main difference is that in the first step the order of variables and interactions is determined.
And in the second step the impact is calculated.
local_interactions(x, ...) ## S3 method for class 'explainer' local_interactions(x, new_observation, keep_distributions = FALSE, ...) ## Default S3 method: local_interactions( x, data, predict_function = predict, new_observation, label = class(x)[1], keep_distributions = FALSE, order = NULL, interaction_preference = 1, ... )
local_interactions(x, ...) ## S3 method for class 'explainer' local_interactions(x, new_observation, keep_distributions = FALSE, ...) ## Default S3 method: local_interactions( x, data, predict_function = predict, new_observation, label = class(x)[1], keep_distributions = FALSE, order = NULL, interaction_preference = 1, ... )
x |
an explainer created with function |
... |
other parameters. |
new_observation |
a new observation with columns that correspond to variables used in the model. |
keep_distributions |
if |
data |
validation dataset, will be extracted from |
predict_function |
predict function, will be extracted from |
label |
character - the name of the model. By default it's extracted from the 'class' attribute of the model. |
order |
if not |
interaction_preference |
an integer specifying which interactions will be present in an explanation. The larger the integer, the more frequently interactions will be presented. |
an object of the break_down
class.
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
break_down
, local_attributions
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- local_interactions(explain_titanic_glm, titanic_imputed[1, ], interaction_preference = 500) bd_glm plot(bd_glm, max_features = 2) ## Not run: library("randomForest") # example with interaction # classification for HR data model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- local_interactions(explainer_rf, new_observation) bd_rf plot(bd_rf) # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) new_observation <- apartments_test[1,] bd_rf <- local_interactions(explainer_rf, new_observation, keep_distributions = TRUE) bd_rf plot(bd_rf) plot(bd_rf, plot_distributions = TRUE) ## End(Not run)
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- local_interactions(explain_titanic_glm, titanic_imputed[1, ], interaction_preference = 500) bd_glm plot(bd_glm, max_features = 2) ## Not run: library("randomForest") # example with interaction # classification for HR data model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- local_interactions(explainer_rf, new_observation) bd_rf plot(bd_rf) # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) new_observation <- apartments_test[1,] bd_rf <- local_interactions(explainer_rf, new_observation, keep_distributions = TRUE) bd_rf plot(bd_rf) plot(bd_rf, plot_distributions = TRUE) ## End(Not run)
Displays a waterfall break down plot for objects of break_down
class.
## S3 method for class 'break_down' plot( x, ..., baseline = NA, max_features = 10, min_max = NA, vcolors = DALEX::colors_breakdown_drwhy(), digits = 3, rounding_function = round, add_contributions = TRUE, shift_contributions = 0.05, plot_distributions = FALSE, vnames = NULL, title = "Break Down profile", subtitle = "", max_vars = NULL )
## S3 method for class 'break_down' plot( x, ..., baseline = NA, max_features = 10, min_max = NA, vcolors = DALEX::colors_breakdown_drwhy(), digits = 3, rounding_function = round, add_contributions = TRUE, shift_contributions = 0.05, plot_distributions = FALSE, vnames = NULL, title = "Break Down profile", subtitle = "", max_vars = NULL )
x |
an explanation created with |
... |
other parameters. |
baseline |
if numeric then veritical line starts in |
max_features |
maximal number of features to be included in the plot. default value is |
min_max |
a range of OX axis. By default |
vcolors |
If |
digits |
number of decimal places ( |
rounding_function |
a function to be used for rounding numbers.
This should be |
add_contributions |
if |
shift_contributions |
number describing how much labels should be shifted to the right, as a fraction of range. By default equal to |
plot_distributions |
if |
vnames |
a character vector, if specified then will be used as labels on OY axis. By default NULL |
title |
a character. Plot title. By default |
subtitle |
a character. Plot subtitle. By default |
max_vars |
alias for the |
a ggplot2
object.
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- break_down(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm, max_features = 3) plot(bd_glm, max_features = 3, vnames = c("average","+ male","+ young","+ cheap ticket", "+ other factors", "final")) ## Not run: ## Not run: library("randomForest") set.seed(1313) # example with interaction # classification for HR data model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- local_attributions(explainer_rf, new_observation) bd_rf plot(bd_rf) plot(bd_rf, baseline = 0) plot(bd_rf, min_max = c(0,1)) bd_rf <- local_attributions(explainer_rf, new_observation, keep_distributions = TRUE) bd_rf plot(bd_rf, plot_distributions = TRUE) bd_rf <- local_interactions(explainer_rf, new_observation, keep_distributions = TRUE) bd_rf plot(bd_rf) plot(bd_rf, plot_distributions = TRUE) # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- local_attributions(explainer_rf, apartments_test[1,]) bd_rf plot(bd_rf, digits = 1) plot(bd_rf, digits = 1, baseline = 0) bd_rf <- local_attributions(explainer_rf, apartments_test[1,], keep_distributions = TRUE) plot(bd_rf, plot_distributions = TRUE) bd_rf <- local_interactions(explainer_rf, new_observation = apartments_test[1,], keep_distributions = TRUE) bd_rf plot(bd_rf) plot(bd_rf, plot_distributions = TRUE) ## End(Not run)
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- break_down(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm, max_features = 3) plot(bd_glm, max_features = 3, vnames = c("average","+ male","+ young","+ cheap ticket", "+ other factors", "final")) ## Not run: ## Not run: library("randomForest") set.seed(1313) # example with interaction # classification for HR data model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- local_attributions(explainer_rf, new_observation) bd_rf plot(bd_rf) plot(bd_rf, baseline = 0) plot(bd_rf, min_max = c(0,1)) bd_rf <- local_attributions(explainer_rf, new_observation, keep_distributions = TRUE) bd_rf plot(bd_rf, plot_distributions = TRUE) bd_rf <- local_interactions(explainer_rf, new_observation, keep_distributions = TRUE) bd_rf plot(bd_rf) plot(bd_rf, plot_distributions = TRUE) # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- local_attributions(explainer_rf, apartments_test[1,]) bd_rf plot(bd_rf, digits = 1) plot(bd_rf, digits = 1, baseline = 0) bd_rf <- local_attributions(explainer_rf, apartments_test[1,], keep_distributions = TRUE) plot(bd_rf, plot_distributions = TRUE) bd_rf <- local_interactions(explainer_rf, new_observation = apartments_test[1,], keep_distributions = TRUE) bd_rf plot(bd_rf) plot(bd_rf, plot_distributions = TRUE) ## End(Not run)
Plot Generic for Break Down Uncertainty Objects
## S3 method for class 'break_down_uncertainty' plot( x, ..., vcolors = DALEX::colors_breakdown_drwhy(), show_boxplots = TRUE, max_features = 10, max_vars = NULL )
## S3 method for class 'break_down_uncertainty' plot( x, ..., vcolors = DALEX::colors_breakdown_drwhy(), show_boxplots = TRUE, max_features = 10, max_vars = NULL )
x |
an explanation created with |
... |
other parameters. |
vcolors |
If |
show_boxplots |
logical if |
max_features |
maximal number of features to be included in the plot. By default it's |
max_vars |
alias for the |
a ggplot2
object.
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") sh_glm <- shap(explain_titanic_glm, titanic_imputed[1, ]) sh_glm plot(sh_glm) ## Not run: ## Not run: library("randomForest") set.seed(1313) model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- break_down_uncertainty(explainer_rf, new_observation, path = c(3,2,4,1,5), show_boxplots = FALSE) bd_rf plot(bd_rf, max_features = 3) # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,], path = c("floor", "no.rooms", "district", "construction.year", "surface")) bd_rf plot(bd_rf) bd_rf <- shap(explainer_rf, apartments_test[1,]) bd_rf plot(bd_rf) plot(bd_rf, show_boxplots = FALSE) ## End(Not run)
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") sh_glm <- shap(explain_titanic_glm, titanic_imputed[1, ]) sh_glm plot(sh_glm) ## Not run: ## Not run: library("randomForest") set.seed(1313) model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5]) bd_rf <- break_down_uncertainty(explainer_rf, new_observation, path = c(3,2,4,1,5), show_boxplots = FALSE) bd_rf plot(bd_rf, max_features = 3) # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,], path = c("floor", "no.rooms", "district", "construction.year", "surface")) bd_rf plot(bd_rf) bd_rf <- shap(explainer_rf, apartments_test[1,]) bd_rf plot(bd_rf) plot(bd_rf, show_boxplots = FALSE) ## End(Not run)
Plots waterfall break down for objects of the break_down
class.
plotD3(x, ...) ## S3 method for class 'break_down' plotD3( x, ..., baseline = NA, max_features = 10, digits = 3, rounding_function = round, bar_width = 12, margin = 0.2, scale_height = FALSE, min_max = NA, vcolors = NA, chart_title = NA, time = 0, max_vars = NULL, reload = FALSE )
plotD3(x, ...) ## S3 method for class 'break_down' plotD3( x, ..., baseline = NA, max_features = 10, digits = 3, rounding_function = round, bar_width = 12, margin = 0.2, scale_height = FALSE, min_max = NA, vcolors = NA, chart_title = NA, time = 0, max_vars = NULL, reload = FALSE )
x |
an explanation created with |
... |
other parameters. |
baseline |
if numeric then veritical line will start in |
max_features |
maximal number of features to be included in the plot. By default it's |
digits |
number of decimal places ( |
rounding_function |
a function to be used for rounding numbers.
This should be |
bar_width |
width of bars in px. By default it's 12px |
margin |
extend x axis domain range to adjust the plot. Usually value between 0.1 and 0.3, by default it's |
scale_height |
if |
min_max |
a range of OX axis. By deafult |
vcolors |
If |
chart_title |
a character. Set custom title |
time |
in ms. Set the animation length |
max_vars |
alias for the |
reload |
Reload the plot on resize. By default it's |
a r2d3
object.
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- local_attributions(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plotD3(bd_glm) ## Not run: ## Not run: library("randomForest") m_rf <- randomForest(status ~ . , data = HR[2:2000,]) new_observation <- HR_test[1,] new_observation p_fun <- function(object, newdata){predict(object, newdata=newdata, type = "prob")} bd_rf <- local_attributions(m_rf, data = HR_test, new_observation = new_observation, predict_function = p_fun) bd_rf plotD3(bd_rf) ## End(Not run)
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- local_attributions(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plotD3(bd_glm) ## Not run: ## Not run: library("randomForest") m_rf <- randomForest(status ~ . , data = HR[2:2000,]) new_observation <- HR_test[1,] new_observation p_fun <- function(object, newdata){predict(object, newdata=newdata, type = "prob")} bd_rf <- local_attributions(m_rf, data = HR_test, new_observation = new_observation, predict_function = p_fun) bd_rf plotD3(bd_rf) ## End(Not run)
Plots Shapley values.
## S3 method for class 'shap' plotD3( x, ..., baseline = NA, max_features = 10, digits = 3, rounding_function = round, bar_width = 12, margin = 0.2, scale_height = FALSE, min_max = NA, vcolors = NA, chart_title = NA, time = 0, max_vars = NULL, reload = FALSE )
## S3 method for class 'shap' plotD3( x, ..., baseline = NA, max_features = 10, digits = 3, rounding_function = round, bar_width = 12, margin = 0.2, scale_height = FALSE, min_max = NA, vcolors = NA, chart_title = NA, time = 0, max_vars = NULL, reload = FALSE )
x |
an explanation created with |
... |
other parameters. |
baseline |
if numeric then veritical line will start in |
max_features |
maximal number of features to be included in the plot. By default it's |
digits |
number of decimal places ( |
rounding_function |
a function to be used for rounding numbers.
This should be |
bar_width |
width of bars in px. By default it's 12px |
margin |
extend x axis domain range to adjust the plot. Usually value between 0.1 and 0.3, by default it's 0.2 |
scale_height |
if |
min_max |
a range of OX axis. By deafult |
vcolors |
If |
chart_title |
a character. Set custom title |
time |
in ms. Set the animation length |
max_vars |
alias for the |
reload |
Reload the plot on resize. By default it's |
a r2d3
object.
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") s_glm <- shap(explain_titanic_glm, titanic_imputed[1, ]) s_glm plotD3(s_glm) ## Not run: ## Not run: library("randomForest") HR_small <- HR[2:500,] m_rf <- randomForest(status ~. , data = HR_small) new_observation <- HR_test[1,] new_observation p_fun <- function(object, newdata){predict(object, newdata=newdata, type = "prob")} s_rf <- shap(m_rf, data = HR_small[,-6], new_observation = new_observation, predict_function = p_fun) plotD3(s_rf, time = 500) ## End(Not run)
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") s_glm <- shap(explain_titanic_glm, titanic_imputed[1, ]) s_glm plotD3(s_glm) ## Not run: ## Not run: library("randomForest") HR_small <- HR[2:500,] m_rf <- randomForest(status ~. , data = HR_small) new_observation <- HR_test[1,] new_observation p_fun <- function(object, newdata){predict(object, newdata=newdata, type = "prob")} s_rf <- shap(m_rf, data = HR_small[,-6], new_observation = new_observation, predict_function = p_fun) plotD3(s_rf, time = 500) ## End(Not run)
Print Generic for Break Down Objects
## S3 method for class 'break_down' print(x, ..., digits = 3, rounding_function = round)
## S3 method for class 'break_down' print(x, ..., digits = 3, rounding_function = round)
x |
an explanation created with |
... |
other parameters. |
digits |
number of decimal places (round) or significant digits (signif) to be used.
See the |
rounding_function |
a function to be used for rounding numbers.
This should be |
a data frame
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
Print Generic for Break Down Objects
## S3 method for class 'break_down_description' print(x, ...)
## S3 method for class 'break_down_description' print(x, ...)
x |
a description of |
... |
other parameters. |
a character
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
Print Generic for Break Down Uncertainty Objects
## S3 method for class 'break_down_uncertainty' print(x, ...)
## S3 method for class 'break_down_uncertainty' print(x, ...)
x |
an explanation created with |
... |
other parameters. |
a data frame.
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- break_down_uncertainty(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm) ## Not run: ## Not run: library("randomForest") set.seed(1313) model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5], y = HR$status[1:1000], verbose = FALSE) bd_rf <- break_down_uncertainty(explainer_rf, new_observation) bd_rf # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,]) bd_rf ## End(Not run)
library("DALEX") library("iBreakDown") set.seed(1313) model_titanic_glm <- glm(survived ~ gender + age + fare, data = titanic_imputed, family = "binomial") explain_titanic_glm <- explain(model_titanic_glm, data = titanic_imputed, y = titanic_imputed$survived, label = "glm") bd_glm <- break_down_uncertainty(explain_titanic_glm, titanic_imputed[1, ]) bd_glm plot(bd_glm) ## Not run: ## Not run: library("randomForest") set.seed(1313) model <- randomForest(status ~ . , data = HR) new_observation <- HR_test[1,] explainer_rf <- explain(model, data = HR[1:1000,1:5], y = HR$status[1:1000], verbose = FALSE) bd_rf <- break_down_uncertainty(explainer_rf, new_observation) bd_rf # example for regression - apartment prices # here we do not have intreactions model <- randomForest(m2.price ~ . , data = apartments) explainer_rf <- explain(model, data = apartments_test[1:1000,2:6], y = apartments_test$m2.price[1:1000]) bd_rf <- break_down_uncertainty(explainer_rf, apartments_test[1,]) bd_rf ## End(Not run)