Package 'modelDown'

Title: Make Static HTML Website for Predictive Models
Description: Website generator with HTML summaries for predictive models. This package uses 'DALEX' explainers to describe global model behavior. We can see how well models behave (tabs: Model Performance, Auditor), how much each variable contributes to predictions (tabs: Variable Response) and which variables are the most important for a given model (tabs: Variable Importance). We can also compare Concept Drift for pairs of models (tabs: Drifter). Additionally, data available on the website can be easily recreated in current R session. Work on this package was financially supported by the NCN Opus grant 2017/27/B/ST6/01307 at Warsaw University of Technology, Faculty of Mathematics and Information Science.
Authors: Przemyslaw Biecek [aut], Magda Tatarynowicz [aut], Kamil Romaszko [aut, cre], Mateusz Urbanski [aut]
Maintainer: Kamil Romaszko <[email protected]>
License: Apache License 2.0
Version: 1.1
Built: 2024-12-31 03:16:59 UTC
Source: https://github.com/modeloriented/modeldown

Help Index


Generates a website with HTML summaries for predictive models

Description

Generates a website with HTML summaries for predictive models

Usage

modelDown(
  ...,
  modules = c("auditor", "drifter", "model_performance", "variable_importance",
    "variable_response"),
  output_folder = "output",
  repository_name = "repository",
  should_open_website = interactive()
)

Arguments

...

one or more explainers created with DALEX::explain() function. Pair of explainer could be provided to check drift of models

modules

modules that should be included in the website

output_folder

folder where the website will be saved

repository_name

name of local archivist repository that will be created

should_open_website

should generated website be automatically opened in default browser

Details

Additional arguments that could by passed by name:

  • remote_repository_path Path to remote repository that stores folder with archivist repository. If not provided, links to local repository will be shown.

  • device Device to use. Tested for "png" and "svg", but values from ggplot2::ggsave function should be working fine. Defaults to "png".

  • vr.vars variables which will be examined in Variable Response module. Defaults to all variables. Example vr.vars = c("var1", "var2")

  • vr.type types of examinations which will be conducteed in Variable Response module. Defaults to "partial". Example vr.type = c("partial", "conditional", "accumulated")

Author(s)

Przemysław Biecek, Magda Tatarynowicz, Kamil Romaszko, Mateusz Urbański

Examples

if(FALSE){
require("ranger")
require("breakDown")
require("DALEX")


# Generate simple modelDown page
HR_data_selected <- HR_data[1000:3000,]
HR_glm_model <- glm(left~., HR_data_selected, family = "binomial")
explainer_glm <- explain(HR_glm_model, data=HR_data_selected, y = HR_data_selected$left)

modelDown::modelDown(explainer_glm,
                     modules = c("model_performance", "variable_importance",
                                 "variable_response"),
                     output_folder = tempdir(),
                     repository_name = "HR",
                     device = "png",
                     vr.vars= c("average_montly_hours"),
                     vr.type = "partial")

# More complex example with all modules
HR_ranger_model <- ranger(as.factor(left) ~ .,
                      data = HR_data, num.trees = 500, classification = TRUE, probability = TRUE)
explainer_ranger <- explain(HR_ranger_model,
                      data = HR_data, y = HR_data$left, function(model, data) {
 return(predict(model, data)$prediction[,2])
}, na.rm=TRUE)

# Two glm models used for drift detection
HR_data1 <- HR_data[1:4000,]
HR_data2 <- HR_data[4000:nrow(HR_data),]
HR_glm_model1 <- glm(left~., HR_data1, family = "binomial")
HR_glm_model2 <- glm(left~., HR_data2, family = "binomial")
explainer_glm1 <- explain(HR_glm_model1, data=HR_data1, y = HR_data1$left)
explainer_glm2 <- explain(HR_glm_model2, data=HR_data2, y = HR_data2$left)

modelDown::modelDown(list(explainer_glm1, explainer_glm2),
  modules = c("auditor", "drifter", "model_performance", "variable_importance",
              "variable_response"),
  output_folder = tempdir(),
  repository_name = "HR",
  remote_repository_path = "some_user/remote_repo_name",
  device = "png",
  vr.vars= c("average_montly_hours", "time_spend_company"),
  vr.type = "partial")
}