Package: DALEX 2.5.1

Przemyslaw Biecek

DALEX: moDel Agnostic Language for Exploration and eXplanation

Any unverified black box model is the path to failure. Opaqueness leads to distrust. Distrust leads to ignoration. Ignoration leads to rejection. DALEX package xrays any model and helps to explore and explain its behaviour. Machine Learning (ML) models are widely used and have various applications in classification or regression. Models created with boosting, bagging, stacking or similar techniques are often used due to their high performance. But such black-box models usually lack direct interpretability. DALEX package contains various methods that help to understand the link between input variables and model output. Implemented methods help to explore the model on the level of a single instance as well as a level of the whole dataset. All model explainers are model agnostic and can be compared across different models. DALEX package is the cornerstone for 'DrWhy.AI' universe of packages for visual model exploration. Find more details in (Biecek 2018) <https://jmlr.org/papers/v19/18-416.html>.

Authors:Przemyslaw Biecek [aut, cre], Szymon Maksymiuk [aut], Hubert Baniecki [aut]

DALEX_2.5.1.tar.gz
DALEX_2.5.1.zip(r-4.5)DALEX_2.5.1.zip(r-4.4)DALEX_2.5.1.zip(r-4.3)
DALEX_2.5.1.tgz(r-4.4-any)DALEX_2.5.1.tgz(r-4.3-any)
DALEX_2.5.1.tar.gz(r-4.5-noble)DALEX_2.5.1.tar.gz(r-4.4-noble)
DALEX_2.5.1.tgz(r-4.4-emscripten)DALEX_2.5.1.tgz(r-4.3-emscripten)
DALEX.pdf |DALEX.html
DALEX/json (API)

# Install 'DALEX' in R:
install.packages('DALEX', repos = c('https://modeloriented.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/modeloriented/dalex/issues

Datasets:

On CRAN:

black-boxdalexdata-scienceexplainable-aiexplainable-artificial-intelligenceexplainable-mlexplanationsexplanatory-model-analysisfairnessimlinterpretabilityinterpretable-machine-learningmachine-learningmodel-visualizationpredictive-modelingresponsible-airesponsible-mlxai

13.21 score 1.4k stars 19 packages 828 scripts 5.2k downloads 9 mentions 57 exports 35 dependencies

Last updated 2 months agofrom:08536350cc. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winNOTENov 01 2024
R-4.5-linuxNOTENov 01 2024
R-4.4-winNOTENov 01 2024
R-4.4-macNOTENov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:colors_breakdown_drwhycolors_discrete_drwhycolors_diverging_drwhyexplainexplain.defaultfeature_importanceget_loss_defaultget_loss_one_minus_accuracyget_loss_yardstickindividual_diagnosticsindividual_profileinstall_dependenciesloss_accuracyloss_cross_entropyloss_defaultloss_one_minus_accuracyloss_one_minus_aucloss_root_mean_squareloss_sum_of_squaresloss_yardstickmodel_diagnosticsmodel_infomodel_partsmodel_performancemodel_predictionmodel_profilepredict_diagnosticspredict_partspredict_parts_break_downpredict_parts_break_down_interactionspredict_parts_kernel_shappredict_parts_kernel_shap_aggreagtedpredict_parts_kernel_shap_break_downpredict_parts_oscillationspredict_parts_oscillations_emppredict_parts_oscillations_unipredict_parts_shappredict_parts_shap_aggregatedpredict_profileset_theme_dalexshap_aggregatedsingle_variabletheme_default_dalextheme_drwhytheme_drwhy_verticaltheme_ematheme_ema_verticaltheme_vertical_default_dalexupdate_dataupdate_labelvariable_attributionvariable_effectvariable_effect_accumulated_dependencyvariable_effect_partial_dependencyvariable_importancevariable_profileyhat

Dependencies:clicodetoolscolorspacefansifarverforeachggplot2gluegridExtragtableiBreakDowningredientsisobanditeratorskernelshaplabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Apartments Dataapartments apartmentsTest apartments_test
DrWhy color palettes for ggplot objectscolors_breakdown_drwhy colors_discrete_drwhy colors_diverging_drwhy
Data for early COVID mortalitycovid covid_spring covid_summer
Dragon Datadragons dragons_test
Create Model Explainerexplain explain.default
FIFA 20 preprocessed datafifa
Wrapper for Loss Functions from the yardstick Packageget_loss_yardstick loss_yardstick
World Happiness Report datahappiness happiness_test happiness_train
Human Resources DataHR HRTest HR_test
Install all dependencies for the DALEX packageinstall_dependencies
Calculate Loss Functionsget_loss_default get_loss_one_minus_accuracy loss_accuracy loss_cross_entropy loss_default loss_one_minus_accuracy loss_one_minus_auc loss_root_mean_square loss_sum_of_squares
Dataset Level Model Diagnosticsmodel_diagnostics
Exract info from modelmodel_info model_info.cv.glmnet model_info.default model_info.gbm model_info.glm model_info.glmnet model_info.lm model_info.lrm model_info.model_fit model_info.randomForest model_info.ranger model_info.rpart model_info.svm model_info.train
Dataset Level Variable Importance as Change in Loss Function after Variable Permutationsfeature_importance model_parts variable_importance
Dataset Level Model Performance Measuresmodel_performance
Dataset Level Variable Profile as Partial Dependence or Accumulated Local Dependence Explanationsmodel_profile single_variable variable_profile
Plot List of Explanationsplot.list
Plot Dataset Level Model Diagnosticsplot.model_diagnostics
Plot Variable Importance Explanationsplot.model_parts
Plot Dataset Level Model Performance Explanationsplot.model_performance
Plot Dataset Level Model Profile Explanationsplot.model_profile
Plot Instance Level Residual Diagnosticsplot.predict_diagnostics
Plot Variable Attribution Explanationsplot.predict_parts
Plot Variable Profile Explanationsplot.predict_profile
Plot Generic for Break Down Objectsplot.shap_aggregated
Instance Level Residual Diagnosticsindividual_diagnostics predict_diagnostics
Instance Level Parts of the Model Predictionspredict_parts predict_parts_break_down predict_parts_break_down_interactions predict_parts_ibreak_down predict_parts_kernel_shap predict_parts_kernel_shap_aggreagted predict_parts_kernel_shap_break_down predict_parts_oscillations predict_parts_oscillations_emp predict_parts_oscillations_uni predict_parts_shap predict_parts_shap_aggregated variable_attribution
Instance Level Profile as Ceteris Paribusindividual_profile predict_profile
Predictions for the Explainermodel_prediction predict.explainer
Print Natural Language Descriptionsprint.description
Print Explainer Summaryprint.explainer
Print Dataset Level Model Diagnosticsprint.model_diagnostics
Print model_infoprint.model_info
Print Dataset Level Model Performance Summaryprint.model_performance
Print Dataset Level Model Profileprint.model_profile
Print Instance Level Residual Diagnosticsprint.predict_diagnostics
Default Theme for DALEX plotsset_theme_dalex theme_default_dalex theme_vertical_default_dalex
SHAP aggregated valuesshap_aggregated
DrWhy Theme for ggplot objectstheme_drwhy theme_drwhy_vertical theme_ema theme_ema_vertical
Passengers and Crew on the RMS Titanic Datatitanic titanic_imputed
Update data of an explainer objectupdate_data
Update label of explainer objectupdate_label
Dataset Level Variable Effect as Partial Dependency Profile or Accumulated Local Effectsvariable_effect variable_effect_accumulated_dependency variable_effect_partial_dependency
Wrap Various Predict Functionsyhat yhat.cv.glmnet yhat.default yhat.function yhat.gbm yhat.glm yhat.glmnet yhat.lm yhat.lrm yhat.model_fit yhat.party yhat.randomForest yhat.ranger yhat.rpart yhat.svm yhat.train