Package: ingredients 2.3.1

Przemyslaw Biecek

ingredients: Effects and Importances of Model Ingredients

Collection of tools for assessment of feature importance and feature effects. Key functions are: feature_importance() for assessment of global level feature importance, ceteris_paribus() for calculation of the what-if plots, partial_dependence() for partial dependence plots, conditional_dependence() for conditional dependence plots, accumulated_dependence() for accumulated local effects plots, aggregate_profiles() and cluster_profiles() for aggregation of ceteris paribus profiles, generic print() and plot() for better usability of selected explainers, generic plotD3() for interactive, D3 based explanations, and generic describe() for explanations in natural language. The package 'ingredients' is a part of the 'DrWhy.AI' universe (Biecek 2018) <arxiv:1806.08915>.

Authors:Przemyslaw Biecek [aut, cre], Hubert Baniecki [aut], Adam Izdebski [ctb]

ingredients_2.3.1.tar.gz
ingredients_2.3.1.zip(r-4.5)ingredients_2.3.1.zip(r-4.4)ingredients_2.3.1.zip(r-4.3)
ingredients_2.3.1.tgz(r-4.4-any)ingredients_2.3.1.tgz(r-4.3-any)
ingredients_2.3.1.tar.gz(r-4.5-noble)ingredients_2.3.1.tar.gz(r-4.4-noble)
ingredients_2.3.1.tgz(r-4.4-emscripten)ingredients_2.3.1.tgz(r-4.3-emscripten)
ingredients.pdf |ingredients.html
ingredients/json (API)
NEWS

# Install 'ingredients' in R:
install.packages('ingredients', repos = c('https://modeloriented.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/modeloriented/ingredients/issues

Pkgdown site:https://modeloriented.github.io

On CRAN:

10.36 score 37 stars 22 packages 83 scripts 4.7k downloads 23 exports 29 dependencies

Last updated 2 years agofrom:d405a01b39. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 30 2024
R-4.5-winOKDec 30 2024
R-4.5-linuxOKDec 30 2024
R-4.4-winOKDec 30 2024
R-4.4-macOKDec 30 2024
R-4.3-winOKDec 30 2024
R-4.3-macOKDec 30 2024

Exports:accumulated_dependenceaccumulated_dependencyaggregate_profilesbind_plotscalculate_oscillationsceteris_paribusceteris_paribus_2dcluster_profilesconditional_dependenceconditional_dependencydescribefeature_importancelocal_dependencypartial_dependencepartial_dependencyplotD3select_neighboursselect_sampleshow_aggregated_profilesshow_observationsshow_profilesshow_residualsshow_rugs

Dependencies:clicolorspacefansifarverggplot2gluegridExtragtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Explanations in natural language

Rendered fromvignette_describe.Rmdusingknitr::rmarkdownon Dec 30 2024.

Last update: 2020-11-12
Started: 2019-08-25

General introduction: Survival on the RMS Titanic

Rendered fromvignette_titanic.Rmdusingknitr::rmarkdownon Dec 30 2024.

Last update: 2020-11-12
Started: 2019-03-23

Simulated data, real problem

Rendered fromvignette_simulated.Rmdusingknitr::rmarkdownon Dec 30 2024.

Last update: 2020-02-17
Started: 2019-12-12

Readme and manuals

Help Manual

Help pageTopics
Accumulated Local Effects Profiles aka ALEPlotsaccumulated_dependence accumulated_dependence.ceteris_paribus_explainer accumulated_dependence.default accumulated_dependence.explainer accumulated_dependency
Aggregates Ceteris Paribus Profilesaggregate_profiles
Bind Multiple ggplot Objectsbind_plots
Calculate Oscillations for Ceteris Paribus Explainercalculate_oscillations
Internal Function for Individual Variable Profilescalculate_variable_profile calculate_variable_profile.default
Internal Function for Split Points for Selected Variablescalculate_variable_split calculate_variable_split.default
Ceteris Paribus Profiles aka Individual Variable Profilesceteris_paribus ceteris_paribus.default ceteris_paribus.explainer
Ceteris Paribus 2D Plotceteris_paribus_2d
Cluster Ceteris Paribus Profilescluster_profiles
Conditional Dependence Profilesconditional_dependence conditional_dependence.ceteris_paribus_explainer conditional_dependence.default conditional_dependence.explainer conditional_dependency local_dependency
Natural language description of feature importance explainerdescribe describe.ceteris_paribus_explainer describe.feature_importance_explainer describe.partial_dependence_explainer
Feature Importancefeature_importance feature_importance.default feature_importance.explainer
Partial Dependence Profilespartial_dependence partial_dependence.ceteris_paribus_explainer partial_dependence.default partial_dependence.explainer partial_dependency
Plots Aggregated Profilesplot.aggregated_profiles_explainer
Plot Ceteris Paribus 2D Explanationsplot.ceteris_paribus_2d_explainer
Plots Ceteris Paribus Profilesplot.ceteris_paribus_explainer
Plot Ceteris Paribus Oscillationsplot.ceteris_paribus_oscillations
Plots Feature Importanceplot.feature_importance_explainer
Plots Ceteris Paribus Profiles in D3 with r2d3 Package.plotD3 plotD3.ceteris_paribus_explainer
Plots Aggregated Ceteris Paribus Profiles in D3 with r2d3 Package.plotD3.aggregated_profiles_explainer
Plot Feature Importance Objects in D3 with r2d3 Package.plotD3.feature_importance_explainer
Prints Aggregated Profilesprint.aggregated_profiles_explainer
Prints Individual Variable Explainer Summaryprint.ceteris_paribus_explainer
Print Generic for Feature Importance Objectprint.feature_importance_explainer
Select Subset of Rows Closest to a Specified Observationselect_neighbours
Select Subset of Rowsselect_sample
Adds a Layer with Aggregated Profilesshow_aggregated_profiles
Adds a Layer with Observations to a Profile Plotshow_observations
Adds a Layer with Profilesshow_profiles
Adds a Layer with Residuals to a Profile Plotshow_residuals
Adds a Layer with Rugs to a Profile Plotshow_rugs