Package: survex 1.2.0.9001
survex: Explainable Machine Learning in Survival Analysis
Survival analysis models are commonly used in medicine and other areas. Many of them are too complex to be interpreted by human. Exploration and explanation is needed, but standard methods do not give a broad enough picture. 'survex' provides easy-to-apply methods for explaining survival models, both complex black-boxes and simpler statistical models. They include methods specific to survival analysis such as SurvSHAP(t) introduced in Krzyzinski et al., (2023) <doi:10.1016/j.knosys.2022.110234>, SurvLIME described in Kovalev et al., (2020) <doi:10.1016/j.knosys.2020.106164> as well as extensions of existing ones described in Biecek et al., (2021) <doi:10.1201/9780429027192>.
Authors:
survex_1.2.0.9001.tar.gz
survex_1.2.0.9001.zip(r-4.5)survex_1.2.0.9001.zip(r-4.4)survex_1.2.0.9001.zip(r-4.3)
survex_1.2.0.9001.tgz(r-4.4-any)survex_1.2.0.9001.tgz(r-4.3-any)
survex_1.2.0.9001.tar.gz(r-4.5-noble)survex_1.2.0.9001.tar.gz(r-4.4-noble)
survex_1.2.0.9001.tgz(r-4.4-emscripten)survex_1.2.0.9001.tgz(r-4.3-emscripten)
survex.pdf |survex.html✨
survex/json (API)
NEWS
# Install 'survex' in R: |
install.packages('survex', repos = c('https://modeloriented.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/modeloriented/survex/issues
Pkgdown site:https://modeloriented.github.io
biostatisticsbrier-scorescensored-datacox-modelcox-regressionexplainable-aiexplainable-machine-learningexplainable-mlexplanatory-model-analysisinterpretable-machine-learninginterpretable-mlmachine-learningprobabilistic-machine-learningshapsurvival-analysistime-to-eventvariable-importancexai
Last updated 7 months agofrom:cb0852a385. Checks:5 OK, 2 ERROR. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 07 2025 |
R-4.5-win | OK | Jan 07 2025 |
R-4.5-linux | OK | Jan 07 2025 |
R-4.4-win | OK | Jan 07 2025 |
R-4.4-mac | OK | Jan 07 2025 |
R-4.3-win | ERROR | Jan 07 2025 |
R-4.3-mac | ERROR | Jan 07 2025 |
Exports:brier_scorec_indexcd_auccumulative_hazard_to_survivalexplainexplain_survivalextract_predict_survshapintegrated_brier_scoreintegrated_cd_aucloss_adapt_mlr3probaloss_brier_scoreloss_integrateloss_integrated_brier_scoreloss_one_minus_c_indexloss_one_minus_cd_aucloss_one_minus_integrated_cd_aucmodel_diagnosticsmodel_partsmodel_performancemodel_profilemodel_profile_2dmodel_survshappredict_partspredict_profilerisk_from_chfset_theme_survexsurv_model_infosurvival_to_cumulative_hazardtheme_default_survextheme_vertical_default_survextransform_to_stepfunction
Dependencies:backportsbase64encbslibcachemcheckmatecliclustercmprskcodetoolscolorspaceDALEXdata.tablediagramdigestdoParallelevaluatefansifarverfastmapfontawesomeforeachforeignFormulafsfuturefuture.applyggplot2globalsgluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsiBreakDowningredientsisobanditeratorsjquerylibjsonlitekernelshapKernSmoothknitrlabelinglatticelavalifecyclelistenvmagrittrMASSMatrixMatrixModelsmemoisemetsmgcvmimemultcompmunsellmvtnormnlmennetnumDerivparallellypatchworkpecpillarpkgconfigplotrixpolsplineprodlimprogressrPublishquantregR6rangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenriskRegressionrlangrmarkdownrmsrpartrstudioapisandwichsassscalesshapeSparseMSQUAREMstringistringrsurvivalTH.datatibbletimeregtinytexutf8vctrsviridisviridisLitewithrxfunyamlzoo
Creating custom explainers
Rendered fromcustom-explainers.Rmd
usingknitr::rmarkdown
on Jan 07 2025.Last update: 2022-09-27
Started: 2022-08-31
Global explanations with SurvSHAP(t)
Rendered fromglobal-survshap.Rmd
usingknitr::rmarkdown
on Jan 07 2025.Last update: 2023-08-30
Started: 2023-08-30
Package usage
Rendered fromsurvex-usage.Rmd
usingknitr::rmarkdown
on Jan 07 2025.Last update: 2023-08-30
Started: 2022-08-31
Partial Dependence Explanations
Rendered frompdp.Rmd
usingknitr::rmarkdown
on Jan 07 2025.Last update: 2023-08-30
Started: 2023-08-30